Nhân 2 vế cho ab ta có:
`a^2+b^2>=2ab`
`<=>(a-b)^2>=0` luôn đúng
Dấu "=" `<=>a=b`
Nhân 2 vế cho ab ta có:
`a^2+b^2>=2ab`
`<=>(a-b)^2>=0` luôn đúng
Dấu "=" `<=>a=b`
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(X+\dfrac{1}{X}\ge2\) (X>0)
B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 0. CMR:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
Cho a,b,c >0. Chứng minh rằng
\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
Chứng minh rằng:
a, \(a^2\)+\(b^2-2ab\ge0\)
b,\(\dfrac{a^2+b^2}{2}\ge ab\)
c,\(a\left(a+2\right)< \left(a+1\right)^2\)
d,\(m^2+n^2+2\ge2\left(m+n\right)\)
e, \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)(với a > 0, b > 0)
cho a,b,c là các số dương , chứng tỏ:
a)\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
b)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
CM:
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\ge2\)
Biết a; b; c; d >0
Cho a và b là các số dương. Chứng minh \(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
Cho a ≥ b ≥ c >0.
Chứng minh bất đẳng thức: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\) ≤ \(\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)