Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Diệu Linh🖤🖤
Xem chi tiết
Thanh Hoàng Thanh
3 tháng 2 2021 lúc 10:46

Bài 1: Giải các phương trình sau:

a) 3(2,2-0,3x)=2,6 + (0,1x-4)

<=> 6.6 - 0.9x = 2,6 + 0,1x - 4

<=> - 0.9x - 0,1x = -6.6 -1,4

<=> -x = -8

<=> x = 8

Vậy x = 8

b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)

<=> 3,6 - x - 0,5 = x - 5,5 + x

<=> - x - 3,1 = -5,5

<=> - x = -2.4

<=> x = 2.4

Vậy  x = 2.4

Lê Kiều Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 20:41

a) ĐKXĐ: \(x\notin\left\{5;-5\right\}\)

Ta có: \(\dfrac{-\left(x^2+5\right)}{x^2-25}=\dfrac{3}{x+5}+\dfrac{x}{x-5}\)

\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-x^2-5}{\left(x-5\right)\left(x+5\right)}\)

Suy ra: \(3x-15+x^2+5x+x^2+5=0\)

\(\Leftrightarrow2x^2+8x-10=0\)

\(\Leftrightarrow2x^2+10x-2x-10=0\)

\(\Leftrightarrow2x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={1}

Yeutoanhoc
28 tháng 2 2021 lúc 16:30

`a,(-(x^2+5))/(x^2-25)=3/(x+5)+x/(x-5)`

`ĐK:x ne +-5`

`pt<=>-x^2+5=3(x-5)+x(x+5)`

`<=>-x^2+5=3x-15+x^2+5x`

`<=>-x^2+5=x^2+8x-15`

`<=>2x^2+8x-20=0`

`<=>x^2+4x-5=0`

`<=>x^2-x+5x-5=0`

`<=>x(x-1)+5(x-1)=0`

`<=>` $\left[ \begin{array}{l}x=1\\x=-5\end{array} \right.$

Vậy `S={1,-5}`

ngọc hân
Xem chi tiết
missing you =
18 tháng 7 2021 lúc 14:11

\(a,=>x^3-2x^2+4x+2x^2-4x+8-x^3+2x-15=0\)

\(< =>2x-7=0< =>x=\dfrac{7}{2}\)

b,\(=>x\left(x^2-25\right)-\left(x+2\right)\left(x^2-2x+4\right)-3=0\)

\(< =>x^3-25x-x^3+2x^2-4x-2x^2+4x-8-3=0\)

\(< =>-25x-11=0\)

\(< =>x=-0,44\)

illumina
Xem chi tiết
Tô Mì
23 tháng 9 2023 lúc 10:03

(a) Điều kiện: \(\left\{{}\begin{matrix}x+1\ge0\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>5\end{matrix}\right.\Rightarrow x>5\).

Phương trình tương đương: \(\sqrt{x+1}=2\sqrt{x-5}\)

\(\Leftrightarrow x+1=4\left(x-5\right)\Leftrightarrow x=7\left(TM\right)\).

Vậy: \(S=\left\{7\right\}.\)

 

(b) Phương trình tương đương: \(x^2-1=8\)

\(\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\).

Vậy: \(S=\left\{\pm3\right\}\)

Nguyễn Lê Phước Thịnh
23 tháng 9 2023 lúc 9:56

a: ĐKXĐ: x+1>=0 và x-5>0

=>x>5

\(\dfrac{\sqrt{x+1}}{\sqrt{x-5}}=2\)

=>\(\sqrt{\dfrac{x+1}{x-5}}=2\)

=>\(\dfrac{x+1}{x-5}=4\)

=>4x-20=x+1

=>3x=21

=>x=7

b: ĐKXĐ: \(x\in R\)

\(\sqrt[3]{x^2-1}=2\)

=>x^2-1=8

=>x^2=9

=>x=3 hoặc x=-3

thuư nguyễn
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 4 2022 lúc 15:48

a.\(x^2-25=8\left(5-x\right)\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-8\left(5-x\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+8\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-13\end{matrix}\right.\)

b.\(\dfrac{x-2}{x+2}-\dfrac{2\left(x-11\right)}{x^2-4}=\dfrac{3}{x-2}\) ; \(ĐK:x\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(x-2\right)\left(x-2\right)-2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(x-2\right)^2-2\left(x-11\right)=3\left(x+2\right)\)

\(\Leftrightarrow x^2-4x+4-2x+22=3x+6\)

\(\Leftrightarrow x^2-9x+20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

 

Nguyễn Công
Xem chi tiết
Akai Haruma
12 tháng 5 2021 lúc 0:47

Lời giải:
a) $|4x^2-25|=0$

$\Leftrightarrow 4x^2-25=0$

$\Leftrightarrow (2x-5)(2x+5)=0$

$\Rightarrow x=\pm \frac{5}{2}$

b) 

$|x-2|=3$

\(\Rightarrow \left[\begin{matrix} x-2=-3\\ x-2=3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=5\end{matrix}\right.\)

c) 

\(|x-3|=2x-1\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ \left[\begin{matrix} x-3=2x-1\\ x-3=1-2x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Rightarrow x=\frac{4}{3}\)

d) 

$|x-5|=|3x-2|$

\(\Rightarrow \left[\begin{matrix} x-5=3x-2\\ x-5=2-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{7}{4}\end{matrix}\right.\)

NHIEM HUU
Xem chi tiết
Ngô Thành Chung
12 tháng 1 2021 lúc 20:41

a, \(\dfrac{\left(2x-5\right)\left(x+2\right)}{4x-3}< 0\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)< 0\\4x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)>0\\4x-3< 0\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-2< x< \dfrac{5}{2}\\x>\dfrac{3}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>\dfrac{5}{2}\end{matrix}\right.\\x< \dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\dfrac{3}{4}< x< \dfrac{5}{2}\\x< -2\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là

S = \(\left(\dfrac{3}{4};\dfrac{5}{2}\right)\cup\left(-\infty;-2\right)\)

b, Pt

⇔ \(\left\{{}\begin{matrix}x^2-5x+6=x^2+6x+5\\x\in R\backslash\left\{-1;2\right\}\end{matrix}\right.\)

⇔ x = \(\dfrac{1}{11}\)

Vậy S = \(\left\{\dfrac{1}{11}\right\}\)

Anatole NGô
Xem chi tiết
YangSu
4 tháng 4 2023 lúc 20:55

\(a,\left(3x-7\right)\left(x+5\right)=\left(5+x\right)\left(3-2x\right)\)

\(\Leftrightarrow\left(3x-7\right)\left(x+5\right)-\left(x+5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(3x-7-3+2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\5x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

\(b,\dfrac{-x+3}{2}=\dfrac{x-2}{3}\left(MSC=6\right)\)

Suy ra :

\(3\left(-x+3\right)=2\left(x-2\right)\)

\(\Leftrightarrow-3x+9-2x+4=0\)

\(\Leftrightarrow-5x+13=0\)

\(\Leftrightarrow x=\dfrac{13}{5}\)

\(c,\dfrac{x-1}{x-2}+\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)\(\left(dkxd:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+2\right)+5\left(x-2\right)-12-x^2+4}{x^2-4}=0\)

\(\Leftrightarrow x^2+2x-x-2+5x-10-12-x^2+4=0\)

\(\Leftrightarrow6x-20=0\)

\(\Leftrightarrow x=\dfrac{10}{3}\)\(\left(n\right)\)

Vậy \(S=\left\{\dfrac{10}{3}\right\}\)

Tuyến Ngô
4 tháng 4 2023 lúc 20:51

a

Đề thi Toán lớp 8 Giữa kì 2 năm 2023 có đáp án (30 đề)

b

Đề thi Toán lớp 8 Giữa kì 2 năm 2023 có đáp án (30 đề)

 

phải ko bn

 

Tuyến Ngô
4 tháng 4 2023 lúc 20:57

a

Áp dụng hệ quả của định lý Ta-lét ta có:

Đề thi Toán lớp 8 Giữa kì 2 năm 2023 có đáp án (30 đề)

b

Ta có:

Đề thi Toán lớp 8 Giữa kì 2 năm 2023 có đáp án (30 đề)
Xem chi tiết
Oriana.su
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 9 2021 lúc 15:11

\(a,\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\\ \Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x+3=1\end{matrix}\right.\Leftrightarrow x=-1\left(N\right)\)

Nguyễn Hoàng Minh
13 tháng 9 2021 lúc 15:17

\(b,\Leftrightarrow3x^2+3x-2\sqrt{x^2+x}=0\left(x\le-1;x\ge0\right)\\ \Leftrightarrow3x\left(x-1\right)-2\sqrt{x\left(x+1\right)}=0\\ \Leftrightarrow\sqrt{x\left(x+1\right)}\left(3\sqrt{x\left(x-1\right)}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\sqrt{x\left(x-1\right)}=\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2-x-\dfrac{4}{9}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\9x^2-9x-4=0\left(1\right)\end{matrix}\right.\)

\(\Delta\left(1\right)=81-4\left(-4\right)\cdot9=225\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{9-15}{18}\\x=\dfrac{9+15}{18}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-\dfrac{1}{3}\left(L\right)\\x=\dfrac{4}{3}\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)