a) ĐKXĐ: \(x\notin\left\{5;-5\right\}\)
Ta có: \(\dfrac{-\left(x^2+5\right)}{x^2-25}=\dfrac{3}{x+5}+\dfrac{x}{x-5}\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-x^2-5}{\left(x-5\right)\left(x+5\right)}\)
Suy ra: \(3x-15+x^2+5x+x^2+5=0\)
\(\Leftrightarrow2x^2+8x-10=0\)
\(\Leftrightarrow2x^2+10x-2x-10=0\)
\(\Leftrightarrow2x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1}
`a,(-(x^2+5))/(x^2-25)=3/(x+5)+x/(x-5)`
`ĐK:x ne +-5`
`pt<=>-x^2+5=3(x-5)+x(x+5)`
`<=>-x^2+5=3x-15+x^2+5x`
`<=>-x^2+5=x^2+8x-15`
`<=>2x^2+8x-20=0`
`<=>x^2+4x-5=0`
`<=>x^2-x+5x-5=0`
`<=>x(x-1)+5(x-1)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-5\end{array} \right.$
Vậy `S={1,-5}`