Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Ngọc An
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
18 tháng 4 2020 lúc 14:00

\(\sqrt{x+9}+\sqrt{2x+4}>5\) ( ĐK : \(x\ge-2\) )

\(\Leftrightarrow3x+13+2\sqrt{\left(x+9\right)\left(2x+4\right)}>25\)

\(\Leftrightarrow2\sqrt{2x^2+22x+36}>12-3x\)

Với \(x\ge4\) BPT luôn đúng

Với \(x< 4\)

\(\Leftrightarrow8x^2+88x+144>9x^2-72x+144\)

\(\Leftrightarrow x^2-160x< 0\)

\(\Leftrightarrow0< x< 160\)

Kết hợp với các TH ta được \(x>0\)

Vậy \(S=\left(0;+\infty\right)\)

Phạm Ngọc An
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2020 lúc 20:24

ĐKXĐ: \(-2\le x\le\frac{5}{2}\)

\(\Leftrightarrow\sqrt{x+2}< \sqrt{3-x}+\sqrt{5-2x}\)

\(\Leftrightarrow x+2< -3x+8+2\sqrt{2x^2-11x+15}\)

\(\Leftrightarrow2x-3< \sqrt{2x^2-11x+15}\)

- Với \(-2\le x< \frac{3}{2}\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge\frac{3}{2}\) hai vế ko âm, bình phương:

\(4x^2-12x+9< 2x^2-11x+15\)

\(\Leftrightarrow2x^2-x-6< 0\Rightarrow-\frac{3}{2}< x< 2\) \(\Rightarrow\frac{3}{2}\le x< 2\)

Kết hợp lại ta được nghiệm của BPT: \(-2\le x< 2\)

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Trang Nana
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 6 2020 lúc 6:29

ĐKXĐ: \(\frac{2}{3}\le x\le5\)

\(\Leftrightarrow\sqrt{2x+7}\ge\sqrt{5-x}+\sqrt{3x-2}\)

\(\Leftrightarrow2x+7\ge2x+3+2\sqrt{-3x^2+17x-10}\)

\(\Leftrightarrow\sqrt{-3x^2+17x-10}\le2\)

\(\Leftrightarrow-3x^2+17x-10\le4\)

\(\Leftrightarrow3x^2-17x+14\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge\frac{14}{3}\end{matrix}\right.\)

Kết hợp ĐKXĐ: \(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}\le x\le1\\\frac{14}{3}\le x\le5\end{matrix}\right.\)

Phạm Trần Phát
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
28 tháng 11 2019 lúc 23:32
Khách vãng lai đã xóa
nngoc
Xem chi tiết
Trên con đường thành côn...
27 tháng 7 2021 lúc 11:05

undefined

nngoc
27 tháng 7 2021 lúc 10:55

giúp mình với ahuhuuu

Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 13:19

1) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

2) ĐKXĐ: \(x\le\dfrac{3}{2}\)

3) ĐKXĐ: \(x\le-2\)

4) ĐKXĐ: \(x< \dfrac{1}{4}\)

5) ĐKXĐ: \(x\le-\dfrac{5}{3}\)

Julian Edward
Xem chi tiết
Aki Tsuki
7 tháng 11 2019 lúc 0:30

a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)

\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)

đặt\(x^2+x+1=t\left(t>0\right)\)

\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)

bình phương 2 vế pt trở thành:

\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)

\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m

vậy pt vô nghiệm

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 0:21

a/ ĐKXĐ: ...

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)

\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)

\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))

\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)

\(\Leftrightarrow11a^2+6a-25=0\)

Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó

b/

Đặt \(x^2+x+1=a>0\)

\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)

\(\Leftrightarrow\sqrt{a^2+3a}=2\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 0:28

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3x^2-5x+7}=3-\sqrt{3x^2-7x+2}\)

\(\Rightarrow3x^2-5x+7=3x^2-7x+11-6\sqrt{3x^2-7x+2}\)

\(\Leftrightarrow3\sqrt{3x^2-7x+2}=2-x\) (\(x\le2\))

\(\Leftrightarrow9\left(3x^2-7x+2\right)=x^2-4x+4\)

\(\Leftrightarrow26x^2-59x+14=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{26}\end{matrix}\right.\)

Do biến đổi ko tương đương nên cần thay lại nghiệm vào pt ban đầu kiểm tra

d/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{x^2+3x+2}+\sqrt{x^2+6x+5}=\sqrt{2x^2+9x+7}\)

\(\Leftrightarrow2x^2+9x+7+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=2x^2+9x+7\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2\left(x+2\right)\left(x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Khách vãng lai đã xóa
Kurusu Syo
Xem chi tiết