Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khải Nhi
Xem chi tiết
ngonhuminh
24 tháng 1 2017 lúc 21:04

d)

\(x\ne a,x\ne b\)

đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)

\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)

Vậy: \(a\ne b\) Pt vô nghiệm

a=b phương trinhg nghiệm với mọi x khác a, b

Khải Nhi
25 tháng 1 2017 lúc 21:13

cảm ơn bạn nha

khanh linh
Xem chi tiết

a) 7(m-11)X - 2X + 14 = 5m

<=> ( 7m - 77 - 2 )X = 5m -14

<=> (7m - 79 )X = 5m - 14

TH1: 7m - 79 = 0 <=> m = \(\frac{79}{7}\)

Thay m = \(\frac{79}{7}\), ta có :

0X = 5 x \(\frac{79}{7}\)  -14

<=> 0X = \(\frac{297}{7}\)

PT vô nghiệm

TH2: m \(\ne\frac{79}{7}\)

<=> phương trình có nghiệm duy nhất x = \(\frac{5m-14}{7m-79}\)

Khách vãng lai đã xóa
khanh linh
Xem chi tiết
Kyun Diệp
Xem chi tiết
Nguyen
24 tháng 2 2019 lúc 19:47

a)\(\Leftrightarrow-79x+7mx-5m+14=0\)

\(\Leftrightarrow\left(7m-79\right)x-5m+14=0\)

\(\Leftrightarrow x=\dfrac{5m-14}{7m-79}\)\(\left(m\ne\dfrac{79}{7}\right)\)

Vậy để pt có nghiệm thì \(m\ne\dfrac{79}{7}\)

b)\(\Leftrightarrow\left(2m-4\right)x+8m+4-m^2+4=0\)

\(\Leftrightarrow x=\dfrac{m^2-8-8m}{2m-4}\)\(\left(m\ne2\right)\)

Vậy pt có nghiệm \(x=\dfrac{m^2-8-8m}{2m-4}\Leftrightarrow m\ne2\)

Vân Nguyễn
Xem chi tiết
Nguyễn Ngọc Lộc
13 tháng 3 2020 lúc 20:33

a, Ta có : \(7x\left(m-11\right)-2x+14=5m\)

=> \(7xm-77x-2x+14=5m\)

=> \(x\left(7m-77-2\right)+14=5m\)

=> \(x=\frac{5m-14}{7m-79}\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{5m-14}{7m-79}\right\}\)

b, Ta có : \(2mx+4\left(2m+1\right)=m^2+4\left(x-1\right)\)

=> \(2mx+8m+4=m^2+4x-4\)

=> \(2mx-4x=m^2-4-8m-4\)

=> \(x=\frac{m^2-8m-8}{2m-4}\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{m^2-8m-8}{2m-4}\right\}\)

Khách vãng lai đã xóa
Nguyễn Thị Tú Linh
Xem chi tiết
Mai Linh
10 tháng 5 2016 lúc 11:44

a. \(\frac{mx+5}{10}\)\(\frac{x+m}{4}\)=\(\frac{m}{20}\)

\(\frac{2mx+10}{20}\)\(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)

2mx +10 + 5x +5m =m

x(2m+5)= -4m -10(1)

* 2m+5= 0 => m=-5/2

(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm

* 2m+5 \(\ne\)0=> m\(\ne\)-5/2

pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2

vậy với m=-5/2 phương trình đã cho vô số nghiệm

m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2

 

Mai Linh
10 tháng 5 2016 lúc 11:49

b.(m+2)x+ 4(2m+1)= \(m^2\)+4(m-1)

(m+2)x= \(m^2\)+ 4m-4-8m -4

(m+2)x=\(m^2\)-4m-8(1)

* với m+2=0 => m=-2

pt(1)<=> 0x=4

vậy phương trinh đã cho vô nghiệm

* với m+2\(\ne\)0=> m\(\ne\)-2

phương trình đã cho có nghiệm duy nhất là x=( \(m^2\)-4m-8):(m-2)

nguyenthitulinh
Xem chi tiết
Nguyễn Thanh Tiên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
5 tháng 5 2017 lúc 14:23

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

Bùi Thị Vân
5 tháng 5 2017 lúc 14:27

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

Bùi Thị Vân
5 tháng 5 2017 lúc 14:45

c) Th1: \(m+1=0\)\(\Leftrightarrow m=-1\).
Thay \(m=-1\) vào phương trình ta được:
\(-5x+1=0\Leftrightarrow x=\dfrac{1}{5}\).
Th2: \(m+1\ne0\)\(\Leftrightarrow m\ne-1\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m+2\right)=-24m+1\).
- \(\Delta=0\)\(\Leftrightarrow-24m+1=0\)\(\Leftrightarrow m=\dfrac{1}{24}\). Khi đó phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-3\right)}{2\left(m+1\right)}=-\dfrac{2.\dfrac{1}{24}-3}{2.\left(\dfrac{1}{24}+1\right)}=-\dfrac{7}{5}\).
- \(\Delta< 0\)\(\Leftrightarrow-24m+1< 0\)\(\Leftrightarrow m>\dfrac{1}{24}\). Khi đó phương trình vô nghiệm.
- \(\Delta>0\Leftrightarrow m< \dfrac{1}{24}\). Khi đó phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\)
\(x_2=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).
​Biện luận:
​- Với \(m=-1\) phương trình có duy nhất nghiệm \(x=\dfrac{1}{5}\).
​- Với \(m=\dfrac{1}{24}\) phương trình có nghiệm kép: \(x_1=x_2=-\dfrac{7}{5}\).
​- Với \(m>\dfrac{1}{24}\) phương trình vô nghiệm.
​- Với \(m< \dfrac{1}{24}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\); \(x_1=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).