Giá trị lớn nhất của biểu thức sau: M=1/x^2+4x+6
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị nhỏ nhất của biểu thức A,B,C và giá trị lớn nhất của biểu thức D,E:
A= x2-4x+1 D= 5-8x-x2
B= 4x2+4x+11 E= 4x-x2+1
C= (x-1).(x+3).(x+2).(x+6)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
A= x2 - 4x +1
= x2 - 4x + 4 - 3
= (x-2)2 -3
Ta có (x-2)2 ≥ 0 ∀ x
⇒ (x-2)2 -3 ≥ -3 ∀ x
Vậy AMin= -3 tại x=2
B= 4x2+4x+11
= 4x2+4x+1+10
= (2x+1)2+10
Ta có (2x+1)2 ≥ 0 ∀ x
⇒ (2x+1)2+10 ≥ 10 ∀ x
Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)
C=(x-1)(x+3)(x+2)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x2+5x-6) (x2+5x+6)
= (x2+5x)2 -36
Ta có (x2+5x)2 ≥ 0 ∀ x
⇒ (x2+5x)2 -36 ≥ -36 ∀ x
Vậy CMin=-36 tại x=0 hoặc x= -5
Tìm giá trị nhỏ nhất của biểu thức A, B, C và giá trị lớn nhất của biểu thức D, E:
A = x2 – 4x + 1
B = 4x2 + 4x + 11
C = (x – 1)(x + 3)(x + 2)(x + 6)
D = 5 – 8x – x2
E = 4x – x2 +1
Tính giá trị nhỏ nhất:
\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$
Vậy $A_{\min}=-3$
Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$
Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$
$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$
$=(x^2+5x)^2-36\geq 0-36=-36$
Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm giá trị lớn nhất:
$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$
Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$
Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$
$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$
Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
Cho phân thức M=\(\dfrac{12}{x^2-4x+6}\). Tìm giá trị lớn nhất của biểu thức M.
M = \(\dfrac{12}{x^2-4x+6}\) đạt giá trị lớn nhất khi x2 - 4x + 6 đạt giá trị nhỏ nhất
Ta có:
x2 - 4x + 6 = x2 - 4x + 4 + 2 = (x - 2)2 + 2
Do (x - 2)2 \(\ge\) 0
\(\Rightarrow\) (x - 2)2 + 2 \(\ge\) 2
\(\Rightarrow\) x2 - 4x + 6 đạt giá trị nhỏ nhất là 2 khi x = 2
Với x = 2, ta có:
M = \(\dfrac{12}{2}=6\)
Vậy giá trị lớn nhất của M là 6 khi x = 2
. Giúp mình giải những bài trong Violympic nhé !
1. Giá trị của x để biểu thức B = 3 - x2 + 2x đạt giá trị lớn nhất .
2. Giá trị lớn nhất của biểu thức A = - 2x2+x-5 .
3. Giá trị của biểu thức 4x(x+1)-(1+2x)2-9 .
4. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
5. Giá trị rút gọn của biểu thức (2x-4)(x+3)-2x(x+1).
6. Giá trị nhỏ nhất của biểu thức 4x2-20x+40.
7. Giá trị của x để 3(2x+9)2-1 đạt giá trị nhỏ nhất.
8. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
9. Giá trị nhỏ nhất của biểu thức A = x(x+1)+3/2 .
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1 .
3−x2+2x3−x2+2x
=−(x2−2x−3)=−(x2−2x−3)
=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)
=−((x−1)2−4)=−((x−1)2−4)
=4−(x−1)2≤4=4−(x−1)2≤4
Vậy MAXB=4⇔x−1=0⇒x=1
2 .
A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98
=2(x−54)2−98=2(x−54)2−98
Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x
Vậy GTNN A = -9/8 <=> x = 5/4
3 .
Tìm giá trị lớn nhất của các biểu thức sau
a) I =(1-x)(x+2)(x+3)(x+6) +2021
b)K =(7-x)(x-5)(x-4)(x-2) +102
c) M = - (2x+1)2(4x+1)(4x+3)-11
\(I=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2021\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2021\)
\(=-\left[\left(x^2+5x\right)^2-6^2\right]+2021\)
\(=-\left(x^2+5x\right)^2+2057\le2057\)
\(I_{max}=2057\) khi \(x^2+5x=0\)
\(K=-\left(x-2\right)\left(x-7\right)\left(x-5\right)\left(x-4\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2-9x+20\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2+9x+14+6\right)+102\)
\(=-\left[\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)\right]+102\)
\(=-\left[\left(x^2-9x+14\right)+6\left(x^2-9x+14\right)+9-9\right]+102\)
\(=-\left(x^2-9x+17\right)^2+111\le111\)
\(K_{max}=111\) khi \(x^2-9x+17=0\)
\(M=-\left(4x^2+4x+1\right)\left(16x^2+16x+3\right)-11\)
Đặt \(4x^2+4x+1=t\Rightarrow16x^2+16x=4t-4\)
\(\Rightarrow M=-t\left(4t-4+3\right)-11\)
\(M=-4t^2+t-11\)
\(M=-4\left(t-\dfrac{1}{8}\right)^2-\dfrac{175}{16}\le-\dfrac{175}{16}\)
\(M_{max}=-\dfrac{175}{16}\) khi \(t=\dfrac{1}{8}\)
77) a) tính giá trị nhỏ nhất của biểu thức A=(x-1)(x-3)+11 b)tính giá trị lớn nhất của biểu thức B=5-4x^2+4x
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-4x^2+4x+5\)
\(=-\left(4x^2-4x+1-6\right)\)
\(=-\left(2x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị lớn nhất của biểu thức
\(M=\dfrac{4x-3}{x^2+1}\)
\(\Leftrightarrow Mx^2+M=4x-3\\ \Leftrightarrow Mx^2-4x+M+3=0\\ \text{PT có nghiệm nên }\Delta'=4-M\left(M+3\right)\ge0\\ \Leftrightarrow4-M^2-3M\ge0\\ \Leftrightarrow-4\le M\le1\)
Vậy \(M_{max}=1\Leftrightarrow\dfrac{4x-3}{x^2+1}=1\Leftrightarrow x^2+1-4x+3=0\Leftrightarrow x=2\)