Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
Thùy Linh
Xem chi tiết
Hàn Băng
Xem chi tiết
Hiếu Thông Minh
22 tháng 11 2019 lúc 21:08

\(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}=\sqrt{14}\)

=>\(\sqrt{14}\left(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}\right)=14\)

<=>\(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)

<=>\(\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

+,với x \(\ge\) 7

\(2\sqrt{14x-49}=14\)

<=>x=7

+,với 3,5\(\le\)x<7

\(\sqrt{14x-49}+7+7-\sqrt{14x-49}=14\)

<=>14=14 ( luôn đúng với mọi x thỏa mãn đkxđ)

Khách vãng lai đã xóa
Triệu Tử Dương
Xem chi tiết
Rồng Đom Đóm
24 tháng 3 2019 lúc 9:24

ĐK:(tự tìm)

Bình phương 2 vế

\(\Rightarrow2x+2\sqrt{x^2-14x+49}=14\)

\(\Leftrightarrow2x+2\sqrt{\left(x-7\right)^2}=14\)

\(\Leftrightarrow2x+2\left|x-7\right|=14\)

Xét \(x\ge7\)\(\Rightarrow2x+2x-14=14\)

\(\Leftrightarrow x=7\left(tm\right)\)

Xét x<7\(\Rightarrow2x-2x+14=14\)

\(\Leftrightarrow14=14\)(luôn đúng)

Thử lại,kết hợp với đk rồi kết luận

Khôi Bùi
24 tháng 3 2019 lúc 9:28

ĐK : \(x\ge\frac{7}{2}\)

Đặt \(\sqrt{14x-49}=a\) , ta có :

\(\sqrt{x+a}+\sqrt{x-a}=\sqrt{14}\)

\(\Leftrightarrow\left(\sqrt{x+a}+\sqrt{x-a}\right)^2=14\)

\(\Leftrightarrow x+a+x-a+2\sqrt{x^2-a^2}=14\)

\(\Leftrightarrow2x+2\sqrt{x^2-14x+49}=14\)

\(\Leftrightarrow2x+2\left|x-7\right|=14\)

TH 1 : \(x\ge7\) \(\Rightarrow4x-14=14\Leftrightarrow x=7\) ( t/m )

TH 2 : \(\frac{7}{2}\le x\le7\)

\(\Rightarrow2x+14-2x=14\)

\(\Leftrightarrow14=14\) ( t/m )

Vậy ...

Thùy Linh
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2019 lúc 9:10

ĐKXĐ:...

Bình phương 2 vế ta được:

\(2x+2\sqrt{x^2-14x+49}=14\)

\(\Leftrightarrow x-7+\sqrt{\left(x-7\right)^2}=0\)

\(\Leftrightarrow x-7+\left|x-7\right|=0\)

- Với \(\frac{49}{14}\le x\le7\Rightarrow...\)

- Với \(x>7\Rightarrow...\)

Đơn giản nên bạn tự phá trị tuyệt đối và giải

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 21:59

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:03

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:13

d/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)

TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

\(\Leftrightarrow x=13\)

TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)

TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)

\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow4=4\) (luôn đúng)

TH4: \(\frac{1}{2}\le x< 1\)

\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)

Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)

Khách vãng lai đã xóa
Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:16

a: ĐKXĐ: x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x>=1/2

\(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)

=>\(\sqrt{2x-1}-2\sqrt{2x-1}+5=0\)

=>\(5-\sqrt{2x-1}=0\)

=>\(\sqrt{2x-1}=5\)

=>2x-1=25

=>2x=26

=>x=13(nhận)

c: \(\sqrt{x^2-10x+25}=2\)

=>\(\sqrt{\left(x-5\right)^2}=2\)

=>\(\left|x-5\right|=2\)

=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

d: \(\sqrt{x^2-14x+49}-5=0\)

=>\(\sqrt{x^2-2\cdot x\cdot7+7^2}=5\)

=>\(\sqrt{\left(x-7\right)^2}=5\)

=>|x-7|=5

=>\(\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

⭐Hannie⭐
1 tháng 11 2023 lúc 21:19

\(a,\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\left(đkxđ:x\ge5\right)\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\left(tm\right)\)

\(b,\sqrt{2x-1}-\sqrt{8x-4}+5=0\left(đkxđ:x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow\sqrt{2x-1}=5\\ \Leftrightarrow2x-1=25\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=13\left(tm\right)\)

\(c,\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

\(d,\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

Cee Hee
1 tháng 11 2023 lúc 21:31

\(a)ĐKXĐ:x\ge5\\ \sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=\dfrac{4}{2}\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2=2^2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=4+5\\ \Leftrightarrow x=9\left(tmđk\right)\)

Vậy \(S=\left\{9\right\}\)

\(b)ĐKXĐ:x\ge2\\ \sqrt{2x-1}-\sqrt{8x-4}+5=0\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{8x-4}=0-5\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow-\left(\sqrt{2x-1}\right)=\left(-5\right)^2\\ \Leftrightarrow-2x+1=-25\\ \Leftrightarrow-2x=\left(-25\right)-1\\ \Leftrightarrow-2x=-26\\ \Leftrightarrow x=\dfrac{-26}{-2}\\ \Leftrightarrow x=13\left(tmđk\right)\)

Vậy \(S=\left\{13\right\}\)

\(c)\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+5\\x=\left(-2\right)+5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{7;3\right\}\)

\(d)\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{x^2-14x+49}=0+5\\ \Leftrightarrow\sqrt{x^2-14x+49}=5\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5+7\\x=\left(-5\right)+7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{12;2\right\}.\)

Nguyễn Kiều Hải Ngân
Xem chi tiết
Aki Tsuki
14 tháng 8 2018 lúc 13:44

a/ \(\sqrt{x^2-14x+49}+4x-7=0\)

\(\Leftrightarrow\sqrt{\left(x-7\right)^2}=7-4x\)

\(\Leftrightarrow\left|x-7\right|=7-4x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=7-4x\\x-7=4x-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}\left(KTM\right)\\x=0\left(TM\right)\end{matrix}\right.\)

Vậy pt có 1 nghiệm x = 0

b/ đkxđ: x ≥2

\(\sqrt{x+2+4\sqrt{x-2}}=4\sqrt{x-2}-5\)

Đặt \(\sqrt{x-2}\) = t (t ≥ 0)

PT \(\Leftrightarrow\sqrt{t^2+4t+4}=4t-5\)

\(\Leftrightarrow\sqrt{\left(t+2\right)^2}=4t-5\)

\(\Leftrightarrow\left|t+2\right|=4t-5\)

Vì t ≥ 0 => t + 2 > 0

=> \(t+2=4t-5\)

\(\Leftrightarrow-3t=-7\Leftrightarrow t=\dfrac{7}{3}\left(TM\right)\)

\(\Rightarrow\sqrt{x-2}=\dfrac{7}{3}\Rightarrow x-2=\dfrac{49}{9}\)

\(\Leftrightarrow x=\dfrac{67}{9}\)(TM)

Vậy pt có nghiệm \(x=\dfrac{67}{9}\)

Quốc Lê Minh
Xem chi tiết