Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trung Hoàng
Xem chi tiết
Lê Bảo Thy
12 tháng 5 2020 lúc 15:25

hello

Khách vãng lai đã xóa
Siêu Quậy Quỳnh
Xem chi tiết
Lyzimi
9 tháng 8 2017 lúc 13:20
Tối chị làm cho e
alibaba nguyễn
9 tháng 8 2017 lúc 16:18

Đề sai

Lyzimi
9 tháng 8 2017 lúc 20:28

cho e lick cái đề đó luôn nà  ... ấn vào đấy    Đáp án đề thi vào lớp 10 Thanh Hóa năm 2013 | Điểm Thi Lớp 10 Thanh Hóa 2016

Trần Đức Huy
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2022 lúc 6:05

\(\left\{{}\begin{matrix}a;b;c\ge0\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow a\left(a-1\right)\le0\Rightarrow a^2\le a\)

\(\Rightarrow\sqrt{2a^2+3a+4}=\sqrt{a^2+a^2+3a+4}\le\sqrt{a^2+a+3a+4}=a+2\)

Tương tự và cộng lại:

\(\Rightarrow M\le a+2+b+2+c+2=7\)

\(M_{max}=7\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

🍀Cố lên!!🍀
Xem chi tiết
An Thy
3 tháng 7 2021 lúc 17:43

\(P=\dfrac{a}{4-3a}+\dfrac{b}{4-3b}+\dfrac{c}{4-3c}=\dfrac{a^2}{4a-3a^2}+\dfrac{b^2}{4b-3b^2}+\dfrac{c^2}{4c-3c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)-3\left(a^2+b^2+c^2\right)}\) (BĐT Cauchy-Schwarz)

\(=\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\)

Ta có: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow4-3\left(a^2+b^2+c^2\right)\le4-\left(a+b+c\right)^2=4-1=3\)

\(\Rightarrow\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow P_{min}=\dfrac{1}{3}\) khi \(a=b=c=\dfrac{1}{3}\)

missing you =
3 tháng 7 2021 lúc 18:01

Casch2:đặt \(\left\{{}\begin{matrix}4-3a=x\\4-3b=y\\4-3c=z\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}a=\dfrac{4-x}{3}\\b=\dfrac{4-y}{3}\\c=\dfrac{4-z}{3}\end{matrix}\right.\)\(x+y+z=9\)

\(=>P=\dfrac{4-x}{3x}+\dfrac{4-y}{3y}+\dfrac{4-z}{3z}=\dfrac{4}{3x}+\dfrac{4}{3y}+\dfrac{4}{3z}-\left(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)\)

\(=\dfrac{\left(2+2+2\right)^2}{3.9}-1=\dfrac{4}{3}-1=\dfrac{1}{3}\)

dấu"=" xảy ra<=>x=y=z=3<=>a=b=c=1/3

 

Nguyễn Văn Phong
Xem chi tiết
Nguyễn Văn Phong
28 tháng 5 2017 lúc 23:13

cần 1 lời giải đáp cụ thể

Neet
28 tháng 5 2017 lúc 23:39

trên face có đấy,lên đó mà tìm

KCLH Kedokatoji
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2020 lúc 23:57

\(GT\Rightarrow\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

Ta có: \(\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{b^4}\ge4\sqrt[4]{\frac{1}{a^{12}b^4}}=\frac{4}{a^3b}\)

Tương tự: \(\frac{3}{b^4}+\frac{1}{c^4}\ge\frac{4}{b^3c}\) ; \(\frac{3}{c^4}+\frac{1}{a^4}\ge\frac{4}{c^3a}\)

\(\Rightarrow\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}\le\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

\(VT=\frac{1}{a^3b+c^2+c^2+1}+\frac{1}{b^3c+a^2+a^2+1}+\frac{1}{c^3a+b^2+b^2+1}\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{2}{c^2}+1+\frac{1}{b^3c}+\frac{2}{a^2}+1+\frac{1}{c^3a}+\frac{2}{b^2}+1\right)\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}+2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\right)\)

\(VT\le\frac{1}{16}\left(6+2\sqrt{3\left(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\right)}\right)=\frac{1}{16}\left(6+6\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 9:56

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)

\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)

\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)

Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)

Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)

Lê Thị Hải Yến
Xem chi tiết
Uchiha Sasuke
8 tháng 1 2018 lúc 9:19

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=K\)

=> a = bK, b = cK, c = dK, d = eK

Do đó: \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)

= \(\dfrac{2b^4K^4+3c^4K^4+4d^4K^4+5e^4K^4}{2b^4+3c^4+4d^4+5d^4}\)

= \(\dfrac{K^4\left(2b^4+3c^4+4d^4+5d^4\right)}{2b^4+3c^4+4d^4+5d^4}\)

= K4 (1)

\(\dfrac{a}{e}=\dfrac{bK}{e}=\dfrac{cK^2}{e}=\dfrac{dK^3}{e}=\dfrac{eK^4}{e}=K^4\left(2\right)\)

(1)(2) => \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\) = \(\dfrac{a}{e}\)