Bài 3: Phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bùi Đại Hiệp

Cho a,b,c là các số thực dương thỏa mãn a4b4+b4c4+c4a4=3a4b4c4.

Chứng minh rằng:\(\frac{1}{a^3b+2c^2+1}+\frac{1}{b^3c+2a^2+1}+\frac{1}{c^3a+2b^2+1}\le\frac{3}{4}\)

Nguyễn Việt Lâm
10 tháng 5 2020 lúc 23:57

\(GT\Rightarrow\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

Ta có: \(\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{b^4}\ge4\sqrt[4]{\frac{1}{a^{12}b^4}}=\frac{4}{a^3b}\)

Tương tự: \(\frac{3}{b^4}+\frac{1}{c^4}\ge\frac{4}{b^3c}\) ; \(\frac{3}{c^4}+\frac{1}{a^4}\ge\frac{4}{c^3a}\)

\(\Rightarrow\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}\le\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

\(VT=\frac{1}{a^3b+c^2+c^2+1}+\frac{1}{b^3c+a^2+a^2+1}+\frac{1}{c^3a+b^2+b^2+1}\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{2}{c^2}+1+\frac{1}{b^3c}+\frac{2}{a^2}+1+\frac{1}{c^3a}+\frac{2}{b^2}+1\right)\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}+2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\right)\)

\(VT\le\frac{1}{16}\left(6+2\sqrt{3\left(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\right)}\right)=\frac{1}{16}\left(6+6\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Tuyết lan Hoàng
Xem chi tiết
Tuyết lan Hoàng
Xem chi tiết
quoc duong
Xem chi tiết
Thảo Xấu Gái
Xem chi tiết
long bi
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
Lâm Tư Nguyệt
Xem chi tiết
Uyên Nguyễn
Xem chi tiết
Pi Chan
Xem chi tiết