Em thử nhá, sai thì em chịu.
\(\frac{1}{x_1^2}+\frac{1}{x_2^2}=8\Leftrightarrow x_1^2+x_2^2=8x_1^2x_2^2\) (với x1; x2 khác 0)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8x_1^2x_2^2\) (1)
Theo hệ thức Viet \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=\frac{-\left(m-1\right)}{2}\\x_1x_2=\frac{c}{a}=-\frac{m}{4}\end{matrix}\right.\)
Thay vào (1) suy ra: \(\frac{\left(m-1\right)^2}{4}+\frac{m}{2}=\frac{m^2}{2}\Leftrightarrow\frac{m^2-2m+1}{4}+\frac{2m}{4}-\frac{2m^2}{4}=0\)
\(\Leftrightarrow-m^2+1=0\Leftrightarrow m^2=1\Leftrightarrow m=\pm1\)