giai phuong trinh\(\left(x+5\right)+\left(x-5\right)+\left(x.5\right)+\left(x\div5\right)=180\)
Giai He phuong trinh:
\(\left\{{}\begin{matrix}x-\left|y-5\right|=8\\\left|x+1\right|+3\left|y+5\right|=21\end{matrix}\right.\)
Từ pt (1) \(\Rightarrow x=8+\left|y-5\right|\ge8\Rightarrow x+1>0\)
- Nếu \(y\ge5\Rightarrow3\left|y+3\right|\ge24>21\Rightarrow\) vô nghiệm
- Nếu \(-5\le y\le5\) hệ trở thành:
\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(y+5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x+3y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=17\\y=-4\end{matrix}\right.\)
- Nếu \(y< -5\) hệ trở thành:
\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(-y-5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x-3y=35\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{37}{2}\\y=\dfrac{-11}{2}\end{matrix}\right.\)
Luân Đào, Hung nguyen, DƯƠNG PHAN KHÁNH DƯƠNG, Thierry Henry, Hạnh Hạnh, Nguyễn Việt Lâm, le thi hong van, Lân Trần Quốc, Unruly Kid, Khôi Bùi , Lê Nguyễn Ngọc Nhi, Ma Đức Minh, Mysterious Person, Akai Haruma, Lightning Farron, Ribi Nkok Ngok, ...
\(\left(2x+3\right)\left(x+2\right)^2\left(2x+5\right)=3\)(Giai phuong trinh)
\(4\left(x^2+4x\right)^2+31\left(x^2+4x\right)+60=3\)
\(t=x^2+4x\)
\(4t^2+31t+57=0\)
\(\orbr{\begin{cases}t=\frac{-31-7}{8}=\frac{-19}{4}\\t=\frac{-31+7}{8}=-3\end{cases}}\)
\(x^2+4x+\frac{19}{4}=0\Rightarrow vn\)
\(x^2+4x+3=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
Giai phuong trinh
\(-2=\frac{2}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{2}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{2}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{2}{\left(x^2+2\right)\left(x^2+1\right)}\)
\(-2=\frac{2}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{2}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{2}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{2}{\left(x^2+2\right)\left(x^2+1\right)}\)
<=>\(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
<=>\(\frac{1}{x^2+1}-\frac{1}{x^2+2}+\frac{1}{x^2+2}-\frac{1}{x^2+3}+...+\frac{1}{x^2+4}-\frac{1}{x^2+5}=-1\)
<=>\(\frac{1}{x^2+1}-\frac{1}{x^2+5}=-1\)
<=>(x2+5)-(x2+1)=-(x2+1)(x2+5)
<=>4=-x4-6x2-5
<=>x4+6x2+9=0
<=>(x2+3)2=0
<=>x2+3=0
Do x2>0
=>x2+3>0 nên PT vô nghiệm
Giai phuong trinh : \(\left(x+5\right)\sqrt{\left(x+1\right)+1}=\sqrt[3]{\left(3x+4\right)}\)
lớp 7 sao mà đã học căn thức ak bạn.có lớp 8 thì đc
giai phuong trinh\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x-2-5x-5=15\)
\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)
Vậy \(S=\left\{\frac{-11}{2}\right\}\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow-4x-7=15\)
\(\Leftrightarrow-4x=22\)
\(\Leftrightarrow x=22:\left(-4\right)\)
\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)
Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)
giai phuong trinh
\(x\left(\frac{5-x}{x+1}\right)\left(x+\frac{5-x}{x+1}\right)=\)\(6\)
Giai he phuong trinh
(I) \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)
(II)\(\left\{{}\begin{matrix}x+\left|y\right|=3\\2x-\left|y\right|=2\end{matrix}\right.\)
(III)\(\left\{{}\begin{matrix}x+\left|y-2\right|=0\\-x+2y=2\end{matrix}\right.\)
a, Ta có ( I ) : \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y\left(5-y\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\5y-y^2-5=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y^2-5y+5=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y^2-2.\frac{5}{2}y+\left(\frac{5}{2}\right)^2-1,25=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\\left(y-2,5\right)^2=1,25\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\\left[{}\begin{matrix}y-2,5=\frac{\sqrt{5}}{2}\\y-2,5=-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5-\frac{\sqrt{5}}{2}-2,5=\frac{5-\sqrt{5}}{2}\\x=5-2,5+\frac{\sqrt{5}}{2}=\frac{15-\sqrt{5}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}y=\frac{\sqrt{5}}{2}+2,5\\y=2,5-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình có 2 nghiệm là : \(\left(x,y\right)=\left(\frac{5-\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{15-\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\) .
Giai phuong trinh giup minh 3 cau nay voi
a,\(3x\left(2-\sqrt{4}\right)=3\left(\sqrt{4}x+1\right)\)
b,\(\left(5-x\right).\left(\sqrt{3}+x\right)-5=0.\)
c,\(\left(x^2-2x\right)+\left(-4+8x\right)=0.\)
cho phuong trinh \(x^2-\left(m+2\right)x+2m=0\left(1\right)\)
a, giai phuong trinh voi m=-1
b, tim m de phuong trinh (1) co 2 nghiem x1;x2 thoa man
\(\left(x_1+x_2\right)^2-x_1.x_2< 5\)
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}