a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
cho phuong trinh \(x^2-\left(m+2\right)x+2m=0\left(1\right)\)
a, giai phuong trinh voi m=-1
b, tim m de phuong trinh (1) co hai nghiem \(x_1;x_2\)thoa man
\(\left(x_1+x_2\right)^2-x_1x_2\le5\)
Tìm m để phương trình \(x^2-2\left(m-1\right)x+2m-3=0\) có 2 nghiệm x1 , x2 sao cho \(A=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị lớn nhất
Cho phương trinhg \(x^2-2\left(m+1\right)x+6m-4=0\)(với m là tham số).Tìm m để phương trình có 2 nghiệm \(x_1,x_2\)thỏa mãn \(\left(2m-2\right)x_1+x_2^2-4x_2=4\)
Cho (P) : \(y=x^2\)
(d) : \(y=\left(2m+1\right)x-m^2-m+6\)
Tìm m để (P) cắt (d) tại hai điểm phân biệt có hoành độ \(x_1,x_2\)thỏa mãn:
\(|x_1^3-x_2^3|=50\)
Cho pt \(x^2-3x+m+1=0\)
Tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn : \(\left|x_1\right|+\left|x_2\right|=2\)
cho phương trình \(x^2-\left(2m+1\right)x+m^2+m=0\) (1), với m là tham số
a) giải phương trình (1) với m=0 => cái này tự giải đc
b) chứng minh với mọi giá trị cuarm phương trình (1) luôn có 2 nghiệm phân biệt
c) giả sử \(x_1,x_2\left(x_1< x_2\right)\) là 2 nghiệm của phương trình (1), chứng minh khi m thay đổi thì điểm \(A\left(x_1;x_2\right)\) nằm trên 1 đường thẳng cố định
1.Giải pt:\(\left\{{}\begin{matrix}5\left|x-3\right|+\frac{12}{x+y}=\frac{21}{2}\\_{ }\left|3-x\right|+\frac{1}{x+y}=\frac{7}{4}\end{matrix}\right.\)
2.Cho pt:\(x^2-2mx+3m+9=0\) (m là tham số)
Tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) sao cho:\(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2+9\right)=27\)
Cho phương trình : \(x^2-2\left(m-1\right)x-3-m=0\) (1)
a, Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2\ge10\)
Cho phương trình : \(x^2-\left(m+2\right)x-m-3=0\) (1)
a, Giải phương trình khi m = -1
b, Tìm giá trị của m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2>1\)