Lời giải:
Trước tiên để pt có hai nghiệm phân biệt $x_1,x_2$ thì
\(\Delta'=(m-1)^2-(2m-3)=m^2-4m+4=(m-2)^2>0\)
\(\Leftrightarrow m\neq 2\)
Áp dụng định lý Viete cho pt bậc 2:
\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-3\end{matrix}\right.\)
Khi đó:
\(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{|x_1+x_2|}{\sqrt{(x_1-x_2)^2}}=\frac{|x_1+x_2|}{\sqrt{(x_1+x_2)^2-4x_1x_2}}\)
\(A=\frac{|2(m-1)|}{\sqrt{4(m-1)^2-4(2m-3)}}=\frac{2|m-1|}{\sqrt{4(m-2)^2}}\)
\(A=\frac{|m-1|}{|m-2|}=\left|\frac{m-1}{m-2}\right|=\left|1+\frac{1}{m-2}\right|\)
Biểu thức này không có giá trị lớn nhất bạn nhé (chỉ có giá trị nhỏ nhất)
vì khi \(m>2\) và $m$ tiến sát đến $2$ thì giá trị \(\frac{1}{m-2}\to +\infty\Rightarrow |1+\frac{1}{m-2}|\to +\infty\) nên $A$ không có max.