Câu 41: Cho hàm số \(f\left(x\right)\) liên tục trên R và thoả mãn \(f\left(0\right)=0\) và \(f\left(x\right)f’\left(\frac{1}{x^2+1}\right)\left(x^2+1\right)=2x^4+4x^3+4x^2+8x\). Tính \(\int\limits^3_0f\left(x\right)dx\)
a) 0 b) 18 c) \(\frac{117}{4}\) d) 15
Cho phương trình \(x^2-2\left(m+2\right)x+m^2-4=0\left(1\right)\) ( \(m\) là tham số ). Gọi \(x_1,x_2\) là hai nghiệm phân biệt của phương trình trên.
a) Không giải phương trình hãy tính \(P=\sqrt{x_1}+\sqrt{x_2}\) với \(m=2\).
b) Tìm \(m\) thoả mản phương trình \(\left(1\right)\) có hai nghiệm thoã mản \(\sqrt{\frac{x_1x_2}{x_1+2x_2+\frac{x_2^2}{x_1}}}=\sqrt{x_1}\)
Cho phương trình \(x^2+\left(2m-2\right)x+m+1=0\) ( với \(m\) là tham số ). Gọi \(x_1,x_2\) là hai nghiệm phân biệt của phương trình trên.
a) Tìm \(m\) để thoả mãn \(\frac{x_1^2}{x_2}=x_1+x_2\).
b) Tìm \(m\) để biểu thức \(P=x_1^2+x_2-x_1x_2\) đạt giá trị nhỏ nhất.
c) Tìm giá trị m để phương trình \(\frac{1}{\sqrt{x^2_1-2x_2+1}}=\sqrt{x_2^2+2x_1+1}\) luôn xác định.
d) Tìm m để hệ phương trình \(\left\{{}\begin{matrix}\sqrt{x_1}a+\sqrt{x_2}b=1\\x_1^2a-x^2_2b=4\end{matrix}\right.\) với hai ẩn \(a,b\) luôn có nghiệm \(\forall x\) với
Giúp em bài này với.
Cho:
\(\int\limits^{\frac{\pi}{8}}_{\pi}\frac{cos\left(4x\right)}{tan\left(x\right)+tan\left(3x\right)}-\frac{cos\left(4x\right)}{cot\left(x\right)+cot\left(3x\right)}=a+b\pi\) ( \(a,b\) là các số hữu tỉ ). Mệnh đề nào sau đây là đúng:
a) \(a>b\)
b) \(16a+4b=0\)
c) \(a+b=1\)
d) \(16a+b=\frac{5}{4}\)
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\)
Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng:
a) 0
b) 1
c) 2
d) -1
Câu 2: Cho cấp số cộng có \(u_1=2\) và \(u_7=23\) .
a) Xác định công thức tổng quát của cấp số cộng trên
b) Tính \(S=u_1+\left(u_2+u_4+u_6+...+u_{20}\right)\)
c) Cho \(u_5+u_6+...+u_{12}=u_{24}+u_{26}+...+u_{40}-m\)Tìm giá trị \(m\) theo các số hạng của cấp số cộng trên.
Câu 3: Một số điện thoại của công ty A có dạng \(1900abcxyz\). Hỏi xác suất là bao nhiêu để thoả mãn các trường hợp sau:
TH1: số \(a,b,c\) lập thành một cấp số cộng với công sai là 4 và chia hết cho 3 và thoả mãn tổng ba số \(x,y,z\) lớn hơn tổng \(a,b,c\) 2 đơn vị và chia hết 2.
TH2: Các chữ số thoả mãn \(x+a=y+b=z+c\)
TH3: Các chữ số thoả mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và đôi một khác nhau
TH4: Các chữ số thoả mản \(x.y.z=a.b.c\) và đôi một khác nhau
Câu 1: Cho \(\lim\limits_{x\rightarrow e}\frac{\log_2\left(\ln\left(x\right)\right)}{f\left(x\right)}=\frac{1}{\ln\left(2\right)e}\). Biết \(\ln\left(f\left(0\right)\right)=1\) và \(\int\limits^{5e}_{-e}f\left(2x\right)dx=18e^2\). Tính \(\frac{\ln\left(f\left(1+e\right)\right)}{f\left(1+e\right)^{10}}\) bằng:
a) 0
b) \(\frac{\ln\left(1+e\right)}{\left(1+e\right)^{10}}\)
c) \(1\)
d) \(\frac{\ln\left(1+2e\right)}{\left(1+2e\right)^{10}}\)