Gọi \(S_1\) là diện tích của hình phẳng bị giới hạn bởi trục hoành, \(y=\cos\left(2x\right)^{\sin\left(2x\right)}\) , \(x=a\) và \(x=\frac{\pi}{2}\) . Gọi \(S_2\) là diện tích của hình phẳng bị giới hạn bởi trục hoành, \(y=\cos\left(2x\right)\sin\left(x\right)\) , \(x=a\) và \(x=\pi\)
thoả mản điều kiện \(S_1.S_2=\frac{2\sqrt{2}}{3}\) , \(S_1+S_2=\frac{3\sqrt{2}+2}{3}\) và ( \(S_1-S_2>0\) )
Khi này tính \(\int\limits^{a+2}_{a+1}\left(a+1\right)x^adx\) bằng:
a) 3
b) 2a
c) 2
d) 1
26. Tính thể tích của vật thể tròn xoay khi quay quanh hình phẳng giới hạn vởi các đường y=4; y=-2; x=0; x=1 quanh trục Ox.
cho hàm số y=f(x) liên tục trên [0;π/2] thỏa \(\int_0^{\frac{\pi}{2}}f^2\left(x\right)dx=3\pi\) , \(\int_0^{\pi}\left(\sin x-x\right)f'\left(\frac{x}{2}\right)dx=6\pi\) ; \(f\left(\frac{\pi}{2}\right)=0\) Tính \(\int_0^{\frac{\pi}{2}}\left(f''\left(x\right)\right)^3dx\)
giúp em với ạ.
Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định và thoả mản \(\int\limits^{\frac{\pi}{8}}_0f\left(2x\right)dx=\frac{1}{2\sqrt{2}}\) và \(f\left(x\right)^2+f’\left(x\right)^2=1\). Khi này tính \(f\left(f\left(\frac{\pi}{2}\right).\pi\right)\) bằng:
a) 0
b) -1
c) 1
d) 2
Tính tích phân :
\(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{3}}\frac{\ln\left(4\tan x\right)}{\sin2x.\ln\left(2\tan x\right)}dx\)
a. Tính S hình phẳng giới hạn bởi đồ thị y = ex(1+x)/1+xex , trục tung và trục hoành.
b. Tính S hình phẳng giới hạn bởi đồ thị hàm số y =3x , trục Oy và đường thẳng x=2.
c. tính S hình phẳng giới hạn bởi hàm số y = x4-4x2+4, y=x2 , trục tung và đường thẳng x=1.
d. Tính S hình phẳng giới hạn bởi hình cong (C) y= 2x+1/x+1 , tiệm cận ngang của (C) và 2 đường thẳng x=1, x=3
e. Tính S hình phẳng giới hạn bởi hàm số y = 2-x2 vvà y=x và các đường thẳng x=-2 , x=1
cho \(\int\limits^2_0\frac{dx}{x^2-x+1}=\int\limits^{\frac{\pi}{3}}_{-\frac{\pi}{6}}\frac{2}{a}dx\) . Chon khẳng định đúng
Cho đồ thị \(\left(C\right):y=f\left(x\right)=\sqrt{x}\). Gọi \(\left(H\right)\) là hình phẳng giới hạn bởi \(\left(C\right)\) và đường thẳng \(x=9\). Cho \(M\) là điểm thuộc \(\left(C\right)\) và điểm \(A\left(9;0\right)\). Gọi \(V_1\) là thể tích khối tròn xoay khi cho \(\left(H\right)\) quay quanh \(Ox\), \(V_2\) là thể tích khối tròn xoay khi cho tam giác \(AOM\) quay quanh \(Ox\). Biết \(V_1=2V_2\). Tính diện tích \(S\) phần hình phẳng giới hạn bởi \(\left(C\right)\) và \(OM\) (hình vẽ không thể hiện chính xác điểm \(M\)).
A. \(S=3\) B. \(S=\frac{27\sqrt{3}}{16}\) C. \(S=\frac{3\sqrt{3}}{2}\) D. \(S=\frac{4}{3}\)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm và liên tục trên \(\left[0;\dfrac{\pi}{2}\right]\)thoả mãn \(f\left(x\right)=f'\left(x\right)-2cosx\). Biết \(f\left(\dfrac{\pi}{2}\right)=1\), tính giá trị \(f\left(\dfrac{\pi}{3}\right)\)
A. \(\dfrac{\sqrt{3}+1}{2}\) B. \(\dfrac{\sqrt{3}-1}{2}\) C. \(\dfrac{1-\sqrt{3}}{2}\) D. 0