\(\left(x+5\right)+\left(x-5\right)+5x+x\div5=180\)
\(\Leftrightarrow\left(x+x+5x\right)+\left(5-5\right)+\frac{x}{5}=180\)
\(\Leftrightarrow7x+0+\frac{x}{5}=180\)
\(\Leftrightarrow7x+\frac{x}{5}=180\)
\(\Leftrightarrow\frac{35x+x}{5}=180\)
\(\Leftrightarrow35x+x=180.5\)
\(\Leftrightarrow36x=900\)
\(\Leftrightarrow x=\frac{900}{36}\)
\(\Leftrightarrow x=25\)
Vậy phương trình có 1 nghiệm duy nhất là 25
(x + 5) + (x - 5) + 5x + \(\frac{x}{5}\)= 180
<=> x + 5 + x - 5 + 5x + \(\frac{x}{5}\) = 180
<=> 7x + \(\frac{x}{5}\) = 180
<=> \(\frac{36x}{5}=180\)
\(\Leftrightarrow x=\frac{180.5}{36}=25\)
\(\left(x+5\right)+\left(x-5\right)+\left(x.5\right)+\left(x:5\right)=180\)\(\Leftrightarrow2x+5x+\frac{x}{5}=180\Leftrightarrow7x+\frac{x}{5}=180\)
\(\Leftrightarrow\frac{35x+x}{5}=\frac{900}{5}\Leftrightarrow35x+x=900\Leftrightarrow36x=900\Leftrightarrow x=25\)
Vậy phương trình có tập nghiệm S = { 25 }