Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bach nhac lam
Xem chi tiết
Akai Haruma
5 tháng 1 2020 lúc 1:14

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
tthnew
5 tháng 1 2020 lúc 14:10

Bài 2/Áp dụng BĐT Bunyakovski:

\(\left(x^2+y^2+z^2\right)\left(1^2+3^2+5^2\right)\ge\left(x+3y+5z\right)^2\)

\(\Rightarrow P\ge\frac{\left(x+3y+5z\right)^2}{35}\) (*)

Ta có: \(x+3y+5z=x.1+\frac{y}{3}.9+\frac{z}{5}.25\)

\(=\frac{16z}{5}+8\left(\frac{y}{3}+\frac{z}{5}\right)+1\left(\frac{z}{5}+\frac{y}{3}+x\right)\)

\(\ge16+8.2+1.3=35\). Thay vào (*) là xong.

Đẳng thức xảy ra khi x = 1; y =3; z = 5

Khách vãng lai đã xóa
bach nhac lam
23 tháng 12 2019 lúc 10:44
Khách vãng lai đã xóa
Phạm Cao Tuấn
Xem chi tiết
bach nhac lam
Xem chi tiết
tthnew
25 tháng 4 2020 lúc 18:22

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

zZz Cool Kid zZz
26 tháng 4 2020 lúc 11:26

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

bach nhac lam
2 tháng 3 2020 lúc 23:47
Khách vãng lai đã xóa
TÔ TÚ QUYÊN
Xem chi tiết
Đen đủi mất cái nik
Xem chi tiết
Nguyễn Tiến Đức
10 tháng 9 2018 lúc 19:41

tự ra câu hởi tự trả lời à bạn

Đen đủi mất cái nik
10 tháng 9 2018 lúc 19:44

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

đoàn danh dũng
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Trung Nguyen
13 tháng 2 2020 lúc 21:27

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Akai Haruma
5 tháng 8 2020 lúc 14:52

Bài 1:
Áp dụng BĐT AM-GM:

$3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1$

$(ab+bc+ac)^2\geq 3abc(a+b+c)=9abc\Rightarrow \frac{2}{3+ab+bc+ac}\leq \frac{2}{3+3\sqrt{abc}}$

Áp dụng BĐT Holder $(1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^3\Rightarrow \sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\leq \sqrt[3]{\frac{abc}{(1+\sqrt[3]{abc})^3}}$

Đặt $\sqrt[6]{abc}=t$. Trong đó $0< t\leq 1$ thì:

$P\leq \frac{2}{3+3t^3}+\frac{t^3}{6}+\frac{t^2}{t^2+1}$

Ta sẽ chỉ ra $\frac{2}{3+3t^3}+\frac{t^3}{6}+\frac{t^2}{t^2+1}\leq 1$

$\Leftrightarrow \frac{2}{3+3t^3}+\frac{t^3}{6}\leq \frac{1}{t^2+1}$

$\Leftrightarrow t^8+t^6+t^5-5t^3+4t^2-2\leq 0$

$\Leftrightarrow (t-1)[t^7+t^6+2t^5+3t^4+3t^3+2t(1-t)+2]\leq 0$ (luôn đúng với mọi $0< t\leq 1$

Do đó $P\leq 1$

Vậy $P_{\max}=1$ khi $a=b=c=1$

Akai Haruma
5 tháng 8 2020 lúc 15:23

Bài 2 bạn xem viết có sai đề không?

le tri tien
20 tháng 8 2020 lúc 20:43

:3 em từ olm sang đây có gì sai thì chỉ bảo

Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)

ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

Anh Tú Dương
Xem chi tiết
Nguyễn Quang Định
22 tháng 7 2018 lúc 9:36

\(A=\sum\dfrac{x}{\sqrt{x^2+1}+x}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}+x}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\le\sum\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}=\sum\dfrac{\sqrt{x}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}=1\)