Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trung Đức
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 9:54

a) Ta có: \(7\cdot\dfrac{3}{14}-\dfrac{1}{14}\)

\(=\dfrac{3}{2}-\dfrac{1}{14}\)

\(=\dfrac{21}{14}-\dfrac{1}{14}\)

\(=\dfrac{10}{7}\)

b) Ta có: \(\dfrac{3}{2}+\dfrac{7}{4}:\dfrac{5}{2}\)

\(=\dfrac{3}{2}+\dfrac{7}{4}\cdot\dfrac{2}{5}\)

\(=\dfrac{3}{2}+\dfrac{7}{10}\)

\(=\dfrac{15}{10}+\dfrac{7}{10}=\dfrac{22}{10}=\dfrac{11}{5}\)

Akai Haruma
11 tháng 7 2021 lúc 9:57

Lời giải:
\(7\times \frac{3}{14}-\frac{1}{14}=\frac{7\times 3}{14}-\frac{1}{14}=\frac{21}{14}-\frac{1}{14}=\frac{21-1}{14}=\frac{20}{14}=\frac{2\times 10}{2\times 7}=\frac{10}{7}\)

\(\frac{3}{2}+\frac{7}{4}:\frac{5}{2}=\frac{3}{2}+\frac{7}{4}\times \frac{2}{5}=\frac{3}{2}+\frac{7\times 2}{4\times 5}=\frac{3}{2}+\frac{7\times 2}{2\times 2\times 5}\)

\(=\frac{3}{2}+\frac{7}{2\times 5}=\frac{3\times 5}{2\times 5}+\frac{7}{2\times 5}=\frac{3\times 5+7}{2\times 5}=\frac{22}{2\times 5}=\frac{2\times 11}{2\times 5}=\frac{11}{5}\)

M r . V ô D a n h
11 tháng 7 2021 lúc 10:01

a. 7 x \(\dfrac{3}{14}\) - \(\dfrac{1}{14}\)

\(\dfrac{7}{1}\) x \(\dfrac{3}{14}\) - \(\dfrac{1}{14}\)

\(\dfrac{98}{14}\) x \(\dfrac{3}{14}\) - \(\dfrac{1}{14}\)

\(\dfrac{3}{2}\) - \(\dfrac{1}{14}\)

\(\dfrac{21}{14}\) - \(\dfrac{1}{14}\)

\(\dfrac{10}{7}\)

 

b. \(\dfrac{3}{2}\) + \(\dfrac{7}{4}\) : \(\dfrac{5}{2}\)

\(\dfrac{6}{4}\) + \(\dfrac{7}{4}\) : \(\dfrac{5}{2}\)

\(\dfrac{13}{4}\) : \(\dfrac{5}{2}\)

\(\dfrac{13}{4}\) . \(\dfrac{2}{5}\)

\(\dfrac{13}{10}\)

Hương Nguyễn
Xem chi tiết

a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\) 

b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\) 

     \(\dfrac{x}{3}=\dfrac{-14}{15}\) 

\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)

\(x=\dfrac{-2}{7}+\dfrac{9}{7}\) 

\(x=1\)

ʚ๖ۣۜAηɗσɾɞ‏
21 tháng 5 2021 lúc 16:28

x=1

hoàng tử gió 2k7
Xem chi tiết
Ami Mizuno
6 tháng 2 2022 lúc 10:46

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)

Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)

Lấy (4) trừ (3) ta có:

\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)

Sửu Phạm
Xem chi tiết
ILoveMath
19 tháng 1 2022 lúc 20:51

Câu 1:

\(\left(x-2\right)\left(x^2+2x+4\right)+25x=x\left(x+5\right)\left(x-5\right)+8\)

\(\Leftrightarrow x^3-8+25x=x\left(x^2-25\right)+8\)

\(\Leftrightarrow x^3-8+25x=x^3-25x+8\)

\(\Leftrightarrow x^3-8+25x-x^3+25x-8=0\)

\(\Leftrightarrow50x-16=0\)

\(\Leftrightarrow50x=16\)

\(\Leftrightarrow x=\dfrac{8}{25}\)

Bacdau)
19 tháng 1 2022 lúc 21:21

Câu 2 :

\(\dfrac{x+5}{4}+\dfrac{3+2x}{3}=\dfrac{6x-1}{3}-\dfrac{1-2x}{12}\)

<=> \(\dfrac{3\left(x+5\right)}{12}+\dfrac{4\left(3+2x\right)}{12}=\dfrac{4\left(6x-1\right)}{12}-\dfrac{1-2x}{12}\)

<=>\(\dfrac{3x+15+12+8x}{12}=\dfrac{24x-4-1+2x}{12}\)

<=> 3x + 15 + 12 + 8x = 24x - 4 - 1 +2x

<=> 11x+27 = 26x -5

<=> ( 26x - 5 ) - ( 11x + 27 ) = 0

<=> 15x - 32 = 0

<=> 15x = 32

<=> x = \(\dfrac{32}{15}\)

Hồ Lê Thiên Đức
19 tháng 1 2022 lúc 21:33

Câu 3:

x - 4/3 - 3x - 1/12 = 3x + 1/4 + 9x - 2/8

<=> 4x - 16 - 3x + 1/12 = 6x + 2 + 9x - 2/8

<=> x - 15/12 = 15x/8

<=> 8x - 120 = 180x

<=> 120 = -172x <=> x = -172/120 = -43/30

Lương Tấn	Sang
Xem chi tiết
Nguyễn Đức Trí
11 tháng 8 2023 lúc 21:03

Bạn xem kỹ lại đề có đúng không?

Adu Darkwa
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

đinh hữu bách
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 9 2021 lúc 11:35

\(E=\dfrac{98:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right)\cdot\dfrac{7}{4}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}\\ E=\dfrac{98}{\dfrac{3}{5}}+\dfrac{\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\\ E=\dfrac{490}{3}+\dfrac{\dfrac{7}{4}}{7}=\dfrac{490}{3}+\dfrac{1}{4}=\dfrac{1963}{12}\)