Câu trả lời:
Ta có : \((x-\dfrac{1}{\sqrt{3}})^2+(y-\dfrac{1}{\sqrt{3}})^2+(z-\dfrac{1}{\sqrt{3}})^2>=0\)
\(=>x^2+y^2+z^2-\dfrac{2}{\sqrt{3}}(x+y+z)+1\ge0\)
\(=>x^2+y^2+z^2+1\ge\dfrac{2}{\sqrt{3}}(x+y+z)\)
\(=>1+1=2\ge\dfrac{2}{\sqrt{3}}(x+y+z)\)
\(=>x+y+z\le\sqrt{3}\)
Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)
\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.\sqrt{3}^2-\dfrac{1}{2}=\dfrac{2}{2}=1\)