HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho a,b,c>0. Tìm Min của
\(A=\dfrac{a^2-3bc}{b+c}+\dfrac{b^2-3ca}{c+a}+\dfrac{3c^2+1}{a+b}\)
Em đang cần gấp, mọi người giúp em với. Cảm ơn!
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\end{matrix}\right.\)
Mình đang cần gấp lắm, các bạn giúp mình với. Cảm ơn!
Cho a,b là các số chẵn. Chứng minh rằng a2 + b2 viết được dưới dạng hiệu hai bình phương của 2 số nguyên
Tìm nghiệm nguyên (x;y) của phương trình: 2x - y2 + 57 =0
\(\left\{{}\begin{matrix}y^2+\dfrac{1}{x^2}+\dfrac{y}{x}=12\\y+\dfrac{1}{x}+\dfrac{y}{x}=8\end{matrix}\right.\)
Cho x,y,z là 3 số thực dương thỏa mãn: x2 + y2 + z2 = 2020
Chứng minh: \(\dfrac{2020}{x^2+y^2}+\dfrac{2020}{y^2+z^2}+\dfrac{2020}{z^2+x^2}\le\dfrac{x^3+y^3+z^3}{2xyz}+3\)
Giải phương trình: \(\sqrt{2x+3}=\frac{8x^3+4x}{2x+5}\)
dfybdfyhbfybvhyvtrshby rr