Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=k\).Tính k.
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=k\) và a+b+c=abc
Tìm k để \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=k\)
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=k\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=k^2\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{2}{ab}+\dfrac{1}{b^2}+\dfrac{2}{bc}+\dfrac{1}{c^2}+\dfrac{2}{ac}=k^2\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1\left(a+b+c\right)}{abc}=k^2\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=k^2-k\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} = k\) và a+b+c=abc. Tìm giá trị của k để:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2} = k\)
Cho bốn số a;b;c;d sao cho a+b+c+d khác 0. Biết \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)
Vậy k =..........
theo bài ra ta có:
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=k\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1=k+1\) \(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=k+1\)
vì a + b + c + d khác 0 => a = b = c = d
ta có:
\(\Rightarrow\frac{4a}{a}=\frac{4b}{b}=\frac{4c}{c}=\frac{4d}{d}=k+1\)
=> 4 = 4 = 4 = 4 = k + 1
=> k + 1 = 4
=> k = 3
vật k = 3
theo đầu bài
=>\(\dfrac{b+c+d}{a}\)=\(\dfrac{c+d+a}{b}\)=\(\dfrac{d+a+b}{c}\)=\(\dfrac{a+b+c}{d}\)=\(\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)=\(\dfrac{3\left[a+b+c+d\right]}{a+b+c+d}\)=>=3
=>k=3
Cho a,b,c thỏa \(a+b+c\le k\) thì \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\left(1+\dfrac{3}{k}\right)^3\)
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cộng vế và rút gọn:
\(\Rightarrow1\ge\dfrac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
\(\Rightarrow\dfrac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\ge\dfrac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\dfrac{1}{\sqrt[3]{abc}}+1\right)^3\ge\left(\dfrac{3}{a+b+c}+1\right)^3\ge\left(\dfrac{3}{k}+1\right)^3\)
Cho 4 số a,b,c,d sao cho a,b,c,d khác 0
Biết \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)
Tính k
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\dfrac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}=\dfrac{3a+3b+3c+3d}{a+b+c+d}=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy \(k=3\)
cho \(\dfrac{x}{a}\)+\(\dfrac{b}{y}\)+\(\dfrac{z}{c}\)=3 và \(\dfrac{a}{x}\)+\(\dfrac{b}{y}\)+\(\dfrac{c}{z}\)=0
tính K= \(\dfrac{x^2}{a^2}\)+\(\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
Chi biết \(\dfrac{a}{c}=\dfrac{b}{d}=k\) . Tính giá trị tỉ số \(\dfrac{c.a^2+d.b^2}{c^3+d^3}\) theo k
a/c=b/d=k
=>a=ck; b=dk
=>\(\dfrac{c\cdot a^2+d\cdot b^2}{c^3+d^3}\)
\(=\dfrac{c\cdot c^2k^2+d\cdot d^2k^2}{c^3+d^3}=k^2\)
đặt \(\dfrac{a}{c}\) =\(\dfrac{b}{d}=k\)
\(\Rightarrow a=c\times k\)
\(b=d\times k\)
\(\dfrac{c.\left(c.k\right)^2+d.\left(d.k\right)^2}{c^3+d^3}\)
=\(\dfrac{c^3.k^2+d^3.k^2}{c^3+d^3}\)
=\(\dfrac{k^2\left(c^3+d^3\right)}{1\left(c^3+d^3\right)}\)=k2
Cho 4 số a,b,c,d sao cho a+b+c+d \(\ne\)0
Biết \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{a}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)
Tính giá trị của k
Theo tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
=> k = 3
sửa: \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)
giải:
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}\\ =\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\\ =\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3=k\)
vậy k=3
Giải :
Cộng thêm 1 vào mỗi tỉ số đã cho ta được:
\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{d+a+b}{c}+1\)\(=\dfrac{a+b+a}{d}+1=\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}\)\(=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Vì a+b+c+d \(\ne\)0 nên a=b=c=d
=>k=\(\dfrac{3a}{a}=3\)
Cho 4 số a,b,c,d sao cho a + b +c + d ≠ 0
Biết : \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{c}=\dfrac{a+b+c}{a}=k\)
Tính k