Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oriana.su
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 19:49

a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

b) Ta có: \(M=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\sqrt{a}\left[\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right]}{2\sqrt{a}}\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}\)

\(=\dfrac{-4\sqrt{a}}{2}=-2\sqrt{a}\)

c) Để M=-4 thì \(-2\sqrt{a}=-4\)

\(\Leftrightarrow\sqrt{a}=2\)

hay a=4(thỏa ĐK)

noname
Xem chi tiết
Trần Ái Linh
10 tháng 6 2021 lúc 9:21

a) Biểu thức xác định `<=> x^2-2x-1>0`

`<=>(x^2-2x+1)-2>0`

`<=>(x-1)^2-(\sqrt2)^2>0`

`<=>(x-1+\sqrt2)(x-1-\sqrt2)>0`

`<=>` \(\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\)

`D=(-∞; 1-\sqrt2) \cup (1+\sqrt2 ; +∞)`

b) Biểu thức xác định `<=> x-\sqrt(2x+1)>0`

`<=> x>\sqrt(2x+1)`

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x+1\ge0\\x^2>2x+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\\\left[{}\begin{matrix}x< 1-\sqrt{2}\\x>1+\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow x>1+\sqrt{2}\)

`D=(1+\sqrt2 ; +∞)`

Chii Phương
Xem chi tiết
HT2k02
7 tháng 4 2021 lúc 21:59

\(T=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-6\right)}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}\\ =\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\)

Áp dụng bất đẳng thức Cosi ta có:

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\)

\(\Rightarrow T\ge\sqrt{3\cdot2+6}=2\sqrt{3}\)

Dấu = xảy ra khi x=4

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 20:31

ĐKXĐ: \(\left\{{}\begin{matrix}a^2-b^2>0\\b\ne0\end{matrix}\right.\)

Hoàng Phú Lợi
Xem chi tiết
Rin Huỳnh
17 tháng 12 2023 lúc 18:34

a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) Với \(a>0;a\ne1;a\ne4\), ta có:

\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).

Hoàng Phú Lợi
Xem chi tiết

a, ĐKXĐ: 

\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)

b,

 \(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)

Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)

Quynh Existn
Xem chi tiết
Yeutoanhoc
27 tháng 6 2021 lúc 8:01

a)ĐK:`-3x+5>=0`

`<=>5>=3x`

`<=>x<=5/3`

b)ĐK:`5/(2x+7)>=0(x ne -7/2)`

Mà `5>0`

`=>2x+7>0`

`<=>2x> -7`

`<=>x> -7/2`

c)ĐK:`(-4x+12)/(-8)>=0`

`<=>(-4(x-3))/(-4.2)>=0`

`<=>(x-3)/2>=0`

`<=>x-3>=0`

`<=>x>=3`

Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 8:03

a, ĐKXĐ : \(\dfrac{-3x+5}{5}\ge0\)

\(\Leftrightarrow-3x+5\ge0\)

\(\Leftrightarrow x\le\dfrac{5}{3}\)

Vậy ..

b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{5}{2x+7}\ge0\\2x+7\ne0\end{matrix}\right.\)

\(\Leftrightarrow2x+7>0\)

\(\Leftrightarrow x>-\dfrac{7}{2}\)

Vậy ...

c, ĐKXĐ : \(\dfrac{-4x+12}{-8}\ge0\)

\(\Leftrightarrow-4x+12\le0\)

\(\Leftrightarrow x\ge3\)

Vậy ...

Big City Boy
Xem chi tiết
Nguyễn Huy Tú
30 tháng 1 2022 lúc 10:59

ĐKXĐ : \(\left\{{}\begin{matrix}a^2-b^2>0\\a-\sqrt{a^2-b^2}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2>b^2\\a^2-b^2\ne a^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2>b^2\\b^2\ne0\end{matrix}\right.\)

Akai Haruma
30 tháng 1 2022 lúc 13:31

Lời giải:
ĐKXĐ: \(\left\{\begin{matrix} a^2-b^2>0\\ a-\sqrt{a^2-b^2}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2>b^2\\ a\neq \sqrt{a^2-b^2}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2> b^2\\ a\neq \sqrt{a^2-b^2}\end{matrix}\right.\)

nguyen ngoc son
Xem chi tiết
YangSu
26 tháng 4 2022 lúc 10:35

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(dk:x\ne0,\pm1\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Vậy \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)