Những câu hỏi liên quan
Haibara Ail
Xem chi tiết
Phùng Minh Quân
31 tháng 3 2018 lúc 18:04

* Chứng minh tổng hai phân số dương nghịch đảo lớn hơn hoặc bằng 2 : 

Cho phân số : \(\frac{a}{b}\)  \(\left(a,b\inℕ^∗\right)\)

\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó : 

\(\frac{a}{b}+\frac{b}{a}-2\ge0\)\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}\ge2\) ( điều phải chứng minh ) 

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Chúc bạn học tốt ~ 

Bình luận (0)
Phùng Minh Quân
31 tháng 3 2018 lúc 17:55

\(a)\) Ta có : 

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Vì tổng của hai phân số nguyên dương nghịch đảo sẽ luôn lớn hơn hoặc bằng 2 nên ta được : 

\(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\\\frac{b}{a}+\frac{a}{b}\ge2\end{cases}}\)

Cộng theo vế ba đẳng thức trên ta có : 

\(\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{a}{b}\ge2+2+2\)

\(\Leftrightarrow\)\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

\(\Leftrightarrow\)\(S\ge6\)

Vậy \(S\ge6\)

\(b)\) Vì \(S\ge6\) nên \(S_{min}=6\) khi \(a=b=c\)

Chúc bạn học tốt ~ 

Bình luận (0)
Haibara Ail
31 tháng 3 2018 lúc 17:57

Bạn ơi, có Chứng minh đc tại sao tổng của 2 phân số dương nghịch đảo lại lớn hơn 2 ko

Bình luận (0)
Cao Thiện Nhân
Xem chi tiết
Cao Thiện Nhân
11 tháng 2 2018 lúc 21:04

Không sửa đề nha

Bình luận (0)
Nguyễn Thị Phương Linh
Xem chi tiết
Kudo Shinichi
3 tháng 2 2020 lúc 9:34

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{ac}{ca}}=2\\\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{bc}{cb}}=2\\\frac{b}{a}+\frac{a}{b}\ge2\sqrt{\frac{ab}{ba}}=2\end{cases}}\)

\(\Rightarrow\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\ge2+2+2=6\)

\(\Leftrightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

\(\Leftrightarrow S\ge6\left(đpcm\right)\)

\(\Rightarrow S_{min}=6\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
On Lai Mát
Xem chi tiết
Đinh Tuấn Việt
18 tháng 5 2015 lúc 21:57

a) \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tổng của hai phân số dương nghịch đảo bao giờ cũng lớn hơn hoặc bằng 2 nên :

\(\frac{a}{c}+\frac{c}{a}\ge2\)  ;   \(\frac{b}{c}+\frac{c}{b}\ge2\)   ;    \(\frac{b}{a}+\frac{a}{b}\ge2\)

\(\Rightarrow S\ge2+2+2=6\)

b) \(S\ge6\) nên GTNN của S là 6 ( \(\Leftrightarrow\) a = b =c )

Bình luận (0)
Nguyễn Huy Hoàng
18 tháng 5 2015 lúc 22:00

a] Ta có : \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

\(\Rightarrow S\ge2+2+2=6\)

b] Ta có \(S=6\Leftrightarrow a=b=c\)

GTNN của S =6

Bình luận (0)
Đinh Tuấn Việt
18 tháng 5 2015 lúc 22:03

Em trả lời trước nhé nhưng chưa hiện lên O-L-M đừng chọn bạn kia vội !

Bình luận (0)
♛☣ Peaceful Life ☣♛
Xem chi tiết
Trí Tiên亗
4 tháng 2 2020 lúc 21:19

Bài 1 :

Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )

Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy min \(S=6\) tại \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Thị Ngọc Anh
Xem chi tiết
Huỳnh Quang Sang
4 tháng 4 2019 lúc 20:28

\(a,S=\left[\frac{a}{c}+\frac{b}{c}\right]+\left[\frac{b}{c}+\frac{c}{a}\right]+\left[\frac{c}{b}+\frac{a}{b}\right]\)

\(S=\left[\frac{a}{c}+\frac{c}{a}\right]+\left[\frac{b}{c}+\frac{c}{b}\right]+\left[\frac{b}{a}+\frac{a}{b}\right]\)

\(S\ge2+2+2=6\)

\(b,GTNN\)của \(S=6\Leftrightarrow a=b=c\inℕ\)

Bình luận (0)
👁💧👄💧👁
Xem chi tiết
👁💧👄💧👁
30 tháng 3 2019 lúc 18:15

Mn đừng chép bài giải ở CHTT nha vì em chưa học đến, giải = cách lớp 6 thôi ạ.

Bình luận (4)
Phạm Minh Quang
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2020 lúc 20:31

Đặt \(\left(a+b-c;a-b+c;-a+b+c\right)=\left(x;y;z\right)\)

\(\Rightarrow p=\frac{a+b+c}{2}=\frac{x+y+z}{2}\) ; \(p-a=\frac{-a+b+c}{2}=\frac{z}{2}\) ...

\(\Rightarrow S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{\frac{xyz\left(x+y+z\right)}{16}}=\frac{1}{4}\sqrt{xyz\left(x+y+z\right)}\)

\(\Rightarrow\sqrt{S}=\frac{1}{2}\sqrt[4]{xyz\left(x+y+z\right)}\)

BĐT trở thành:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[4]{\frac{3}{xyz\left(x+y+z\right)}}\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên chỉ cần chứng minh: \(\frac{1}{\sqrt[3]{xyz}}\ge\sqrt[4]{\frac{3}{xyz\left(x+y+z\right)}}\)

Mũ 12 hai vế: \(\Leftrightarrow\frac{1}{\left(xyz\right)^4}\ge\frac{27}{\left(xyz\right)^3\left(x+y+z\right)^3}\Leftrightarrow\left(x+y+z\right)^3\ge27xyz\)

Hiển nhiên đúng theo AM-GM

Dấu "=" xảy ra khi tam giác đều

Bình luận (0)
Phạm Minh Quang
13 tháng 4 2020 lúc 20:04
Bình luận (0)
Lại Lâm Vũ
Xem chi tiết
Lê Tài Bảo Châu
24 tháng 12 2019 lúc 23:52

Xét hiệu \(S_1-S_2=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}\)

                         \(=\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{\left(b-c\right)\left(b+c\right)}{b+c}+\frac{\left(c-a\right)\left(c+a\right)}{c+a}\)

                         \(=a-b+b-c+c-a\)

                           \(=0\)

\(\Rightarrow S_1=S_2\)

+) Áp dụng bđt AM-GM ta có:

\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{b^2}{b+c}.\frac{b+c}{4}}=b\)

\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{c^2}{c+a}.\frac{c+a}{4}}=c\)

Cộng theo vế các đẳng thức trên ta được:

\(S_1+\frac{a+b+c}{2}\ge a+b+c\)

\(\Rightarrow S_1\ge\frac{a+b+c}{2}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Lionel Messi
25 tháng 12 2019 lúc 15:31

dit me may

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
25 tháng 12 2019 lúc 19:46

Svac-xơ:

\(S_1\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa