Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Minh Quang

Cho tam giác ABC có diện tích S, các cạnh là a,b,c. Chứng minh: \(\frac{1}{a+b-c}+\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{3\sqrt[4]{3}}{2\sqrt{S}}\)

Nguyễn Việt Lâm
13 tháng 4 2020 lúc 20:31

Đặt \(\left(a+b-c;a-b+c;-a+b+c\right)=\left(x;y;z\right)\)

\(\Rightarrow p=\frac{a+b+c}{2}=\frac{x+y+z}{2}\) ; \(p-a=\frac{-a+b+c}{2}=\frac{z}{2}\) ...

\(\Rightarrow S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{\frac{xyz\left(x+y+z\right)}{16}}=\frac{1}{4}\sqrt{xyz\left(x+y+z\right)}\)

\(\Rightarrow\sqrt{S}=\frac{1}{2}\sqrt[4]{xyz\left(x+y+z\right)}\)

BĐT trở thành:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[4]{\frac{3}{xyz\left(x+y+z\right)}}\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên chỉ cần chứng minh: \(\frac{1}{\sqrt[3]{xyz}}\ge\sqrt[4]{\frac{3}{xyz\left(x+y+z\right)}}\)

Mũ 12 hai vế: \(\Leftrightarrow\frac{1}{\left(xyz\right)^4}\ge\frac{27}{\left(xyz\right)^3\left(x+y+z\right)^3}\Leftrightarrow\left(x+y+z\right)^3\ge27xyz\)

Hiển nhiên đúng theo AM-GM

Dấu "=" xảy ra khi tam giác đều

Phạm Minh Quang
13 tháng 4 2020 lúc 20:04

Các câu hỏi tương tự
Văn Thắng Hồ
Xem chi tiết
fghj
Xem chi tiết
khoimzx
Xem chi tiết
Khánh Ngọc
Xem chi tiết
khoimzx
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Phương Oanh
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết