\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{47.49}\)
Tính nhanh các tổng sau :
S=\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}+\)\(\dfrac{2}{5.7}+\)...+\(\dfrac{2}{47.49}\)
tính tổng có quy luật :
H=\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+......+\(\dfrac{1}{47.49}\)+\(\dfrac{1}{49.51}\)
\(2H=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{49.51}\)
\(2H=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{51-49}{49.51}\)
\(2H=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{51}{49.51}-\dfrac{49}{49.51}\)
\(2H=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
\(2H=1-\dfrac{1}{51}\)
\(2H=\dfrac{50}{51}\)
\(H=\dfrac{25}{51}\)
B=\(\dfrac{-1}{3}\)+ \(\dfrac{-1}{3.5}\)+ \(\dfrac{-1}{5.7}\)+ \(\dfrac{-1}{7.9}\) +... + \(\dfrac{-1}{99.101}\)
\(B=-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{100}{101}=-\dfrac{50}{101}\)
Tính hợp lí:
A=\(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\)
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)
Giúp mik nha mik đang cần rất là gấp nha !!!!!!!!!!
A bn lướt xuống dưới mà xem cách làm
nhưng của bn là cho 3 ra ngoài nha
Giải:
A=3/1.3+3/3.5+3/5.7+...+3/49.51
A=3/2.(2/1.3+2/3.5+2/5.7+...+2/49.51)
A=3/2.(1/1-1/3+1/3-1/5+1/5-1/7+...+1/49-1/51)
A=3/2.(1/1-1/51)
A=3/2.50/51
A=25/17
B=1/3+1/32+1/33+...+1/38
3B=1+1/3+1/32+...+1/37
3B-B=(1+1/3+1/32+...+1/37)-(1/3+1/32+1/33+...+1/38)
2B=1-1/38
B=1-1/38 /2
Chúc bạn học tốt!
Tính P = \(\dfrac{1^2}{3.5}+\dfrac{2^2}{3.5}+\dfrac{3^2}{5.7}+....+\dfrac{1004^2}{2007.2009}+\dfrac{1005^2}{2009.2011}\)
\(P=\dfrac{1^2}{1.3}+\dfrac{2^2}{3.5}+...+\dfrac{1005^2}{2009.2011}\)
\(\Leftrightarrow4P=\dfrac{4.1^2}{1.3}+\dfrac{4.2^2}{3.5}+...+\dfrac{4.1005^2}{2009.2011}\)
\(=\dfrac{2^2}{2^2-1}+\dfrac{4^2}{4^2-1}+...+\dfrac{2010^2}{2010^2-1}\)
\(=2009+\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2009.2011}\right)\)
\(=2009+\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=2009+\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right)=2009+\dfrac{1005}{2011}\)
Tính \(\dfrac{1^2}{1.3}+\dfrac{2^2}{3.5}+\dfrac{3^3}{5.7}+...+\dfrac{1006^2}{2011.2013}\)
Đặt \(A=\dfrac{1^2}{1.3}+\dfrac{2^2}{3.5}+\dfrac{3^3}{5.7}+...+\dfrac{1006^2}{2011.2013}\)
\(\Rightarrow4A=\dfrac{4.1^2}{1.3}+\dfrac{4.2^2}{3.5}+\dfrac{4.3^3}{5.7}+...+\dfrac{4.1006^2}{2011.2013}\)
\(\Rightarrow4A=1006+\dfrac{1}{2}.\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{2011}-\dfrac{1}{2013}\right]\)
\(\Rightarrow A=\dfrac{1006+\dfrac{1}{2}.\left(1-\dfrac{1}{2013}\right)}{4}\)
\(\Rightarrow A=251,6249\)
\(\dfrac{1^2}{1.3}+\dfrac{2^2}{3.5}+\dfrac{3^2}{5.7}\)
Tính P = \(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{2015.2017}\)
giup voi mk dang voi
\(P=\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{2015.2017}\)
\(P=3\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2015.2017}\right)\)
\(P=3.\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)
\(P=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{2017}\right)\)
\(P=\dfrac{3}{2}.\dfrac{2014}{6051}\)
\(P=\dfrac{1007}{2017}\)
Ta có :
\(P=\dfrac{3}{3.5}+\dfrac{3}{5.7}+.................+\dfrac{3}{2015.2017}\)
\(P.\dfrac{3}{2}=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.................+\dfrac{2}{2015.2017}\)
\(P.\dfrac{3}{2}=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.................+\dfrac{1}{2015}-\dfrac{1}{2017}\)
\(P.\dfrac{3}{2}=\dfrac{1}{3}-\dfrac{1}{2017}\)
\(P.\dfrac{3}{2}=\dfrac{2014}{6051}\)
\(\Rightarrow P=\dfrac{4028}{18153}\)
~ Chúc bn học tốt ~
Tính :
a) A = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....+\dfrac{2}{37.39}\)
b) B = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{73.76}\)
a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{12}{39}\)
Vậy \(A=\dfrac{12}{39}\)
b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=1-\dfrac{1}{76}\)
\(=\dfrac{75}{76}\)
Vậy \(B=\dfrac{75}{76}\)
a) Ta có :
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)
b) Ta có :
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)
\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)
~ Học tốt ~