m^2-2m+4>0
Tìm để 2 bất phương trình tương đương :
a) (2m-1)x+3-2m>0(1); (2m+1)x+2-2m>0(2)
b) 2mx-m+4>0(1); (m-2)x-2m+1<0(2)
(4) cmr: pt sau luôn có nghiệm ∀m
a) \(x^2+2\left(m-1\right)x-2m-3=0\)
b) \(x^2+\left(2m-1\right)x+2m-2=0\)
c) \(x^2-2\left(m+1\right)+2m-2=0\)
d) \(x^2-2\left(m+1\right)x+2m=0\)
e) \(x^2-2mx+m-7=0\)
f) \(x^2-2\left(m-1\right)x-3-m=0\)
giúp mk vs ạ mk cần gấp
\(a,\Delta=4\left(m-1\right)^2-4\left(-2m-3\right)=4m^2-8m+4+8m+12\\ \Delta=4m^2+16>0\left(đpcm\right)\\ b,\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-4m+1-8m+8\\ \Delta=4m^2-12m+9=\left(2m-3\right)^2\ge0\left(đpcm\right)\\ c,Sửa:x^2-2\left(m+1\right)x+2m-2=0\\ \Delta=4\left(m+1\right)^2-4\left(2m-2\right)=4m^2+8m+4-8m+8\\ \Delta=4m^2+12>0\left(đpcm\right)\\ d,\Delta=4\left(m+1\right)^2-4\cdot2m=4m^2+8m+4-8m\\ \Delta=4m^2+4>0\left(đpcm\right)\\ e,\Delta=4m^2-4\left(m+7\right)=4m^2-4m+7=\left(2m-1\right)^2+6>0\left(đpcm\right)\\ f,\Delta=4\left(m-1\right)^2-4\left(-3-m\right)=4m^2-8m+4+12+4m\\ \Delta=4m^2-4m+16=\left(2m-1\right)^2+15>0\left(đpcm\right)\)
Bài 1: Tìm m để phương trình sau có 3 nghiệm lập thành 1 cấp số cộng:
1, \(x^3-x^2-m^2x+m^2=0\)
2, \((x-2)(x^2-2mx+2m+3)=0\)
3, \(x^3-(2m-3)x^2-mx+m-2=0\)
4, \(x^3+(2m-1)x^2+(4m+1)x+2m+3=0\)
Bài 2: Tìm m để phương trình sau có 4 nghiệm lập thành 1 cấp số cộng:
a, \(-x^4+2mx^2-2m+1=0\)
b, \(x^4+2(m-2)x^2+m^2-5m+5=0\)
Bài 3: Tìm 3 số lập thành 1 cấp số cộng biết tổng của chúng bằng tổng các bình phương bằng 83
bài 11: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm trái dấu
a) x2+(2m-2)x+m+1=0
b)-3x2+(m-2)x+4-m2=0
c) (m-1)x2+mx+m2+4m-5=0
d)(m+1)x2+4(2m-1)x+m+1=0
e)2mx2-3(m+1)x-m2-2m+3=0
f)4x2+2(2m-1)x+2m2-5m+2=0
g)(6-m)x2+2(m-2)x-m2-2m+3=0
h)mx2+(m-2)x+2m-1=0
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)
b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)
c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)
\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)
d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)
\(\Rightarrow\) Ko tồn tại m thỏa mãn
e/ \(2m\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)
f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)
g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)
h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)
bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm dương
a) x2+(-2m-1)x-m+1=0
b)x2+(m+2)x-2m+1=0
c) 4x2+4(m+1)x+4m+1=0
d)-4x2+4(2m-1)x-m=0
e)-x2+(m+1)x-m=0
f)(m-2)x2+2(2m-3)x+5m-6=0
Để pt có 2 nghiệm dương (ko yêu cầu pb?) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2+4m-4\ge0\\x_1+x_2=2m+1>0\\x_1x_2=-m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-3\ge0\\m>-\frac{1}{2}\\m< 1\end{matrix}\right.\) \(\Rightarrow\frac{\sqrt{3}}{2}\le m< 1\)
b/ \(\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2-4\left(-2m+1\right)\ge0\\-m-2>0\\-2m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+12m\ge0\\m< -2\\m< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m\le-12\)
c/
\(\left\{{}\begin{matrix}\Delta'=4\left(m+1\right)^2-4\left(4m+1\right)\ge0\\-m-1>0\\\frac{4m+1}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m\ge0\\m< -1\\m>-\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
d/
\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\2m-1>0\\\frac{m}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-8m+1\ge0\\m>\frac{1}{2}\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge\frac{2+\sqrt{3}}{2}\)
e/
\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4m\ge0\\x_1+x_2=m+1>0\\x_1x_2=m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2\ge0\\m>-1\\m>0\end{matrix}\right.\) \(\Rightarrow m>0\)
f/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\x_1+x_2=\frac{2\left(3-2m\right)}{m-2}>0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\frac{3-2m}{m-2}>0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1\le m\le3\\\frac{3}{2}< m< 2\\\left[{}\begin{matrix}m< \frac{6}{5}\\m>2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Tìm \(m\) thỏa mãn \(\left\{{}\begin{matrix}\frac{m-4}{2-m^2}< 0\\\frac{m-2m^2}{4-2m^2}>0\end{matrix}\right.\)
\(\frac{m-4}{2-m^2}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-4>0\\2-m^2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-4< 0\\2-m^2>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>4\\m< \sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m< 4\\m>\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\sqrt{2}< m< 4\)(1)
\(\frac{m-2m^2}{4-2m^2}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2m^2>0\\4-2m^2>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2m^2< 0\\m-2m^2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< \sqrt{2}\\m\left(1-2m\right)>0\end{matrix}\right.\\\left\{{}\begin{matrix}m>\sqrt{2}\\m\left(1-2m\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< \sqrt{2}\\\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\1-2m>0\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\1-2m< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}m>\sqrt{2}\\\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\1-2m< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\1-2m>0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< \sqrt{2}\\\left\{{}\begin{matrix}m>0\\m< \frac{1}{2}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}m>\sqrt{2}\\m>\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< m< \frac{1}{2}\\m>\sqrt{2}\end{matrix}\right.\) (2)
\(\underrightarrow{\left(1\right)\left(2\right)}\) \(\sqrt{2}< m< \frac{1}{2}\)
Bài 4:Tìm m để pt sau có nghiệm kép:
a)\(x^2-\left(3-2m\right)x+m^2=0\)
b)\(x^2+\left(2m+1\right)x+m^2=0\)
a, x2 - (3 - 2m)x + m2 = 0
\(\Delta\) = [-(3 - 2m)]2 - 4.1.m2 = 9 - 12m + 4m2 - 4m2 = 9 - 12m
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 9 - 12m = 0 \(\Leftrightarrow\) m = \(\dfrac{3}{4}\)
Vậy ...
b, x2 + (2m + 1)x + m2 = 0
\(\Delta\) = (2m + 1)2 - 4.1.m2 = 4m2 + 4m + 1 - 4m2 = 4m + 1
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 4m + 1 = 0 \(\Leftrightarrow\) m = \(\dfrac{-1}{4}\)
Vậy ...
Chúc bn học tốt!
bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm âm
a) x2+(2m-1)x+m+1=0
b)-x2+(m-2)x+2m-1=0
c) x2+mx+m-3/4=0
d)4x2+4(2m-1)x+m=0
e)x2-(m+1)x+m-1=0
f)(m-2)x2-2(m-2)x+1=0
Để pt có 2 nghiệm âm (không cần phân biệt) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}< 0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)
a/
\(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2-4\left(m+1\right)\ge0\\x_1+x_2=-2m+1< 0\\x_1x_2=m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-8m-3\ge0\\m>\frac{1}{2}\\m>-1\end{matrix}\right.\) \(\Rightarrow m\ge\frac{2+\sqrt{7}}{2}\)
b/
\(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2+4\left(2m-1\right)\ge0\\x_1+x_2=m-2< 0\\x_1x_2=1-2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m\ge0\\m< 2\\n< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-4\\0\le m< \frac{1}{2}\end{matrix}\right.\)
c/
\(\left\{{}\begin{matrix}\Delta=m^2-4\left(m-\frac{3}{4}\right)\ge0\\x_1+x_2=-m< 0\\x_1x_2=m-\frac{3}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+3\ge0\\m>0\\m>\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\frac{3}{4}< m\le1\end{matrix}\right.\)
d/
\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\x_1+x_2=1-2m< 0\\x_1x_2=\frac{m}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>\frac{1}{2}\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge1\)
e/
\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\x_1+x_2=m+1< 0\\x_1x_2=m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5>0\\m< -1\\m>1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
f/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\x_1+x_2=2< 0\left(vô-lý\right)\\x_1x_2=\frac{1}{m-2}>0\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Giải và biện luận theo m số nghiệm của phương trình:
a. (m2-4)x + m-2 =0
b. m2x - 2m = 16x + 2m
c. (m-3)x2 + 4x - 2=0
d. x2-5x+2m -1 =0
e .(m-1)x2 - 2mx + m-3=0
thấy x bật nhất thì dùng biện luận theo kiểu bật nhất
thấy x bật 2 thì dùng denta
a: =>x(m-2)(m+2)=-m+2
Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0
=>m<>2; m<>-2
Đểphương trình vô nghiệm thì m+2=0
=>m=-2
Để phương trình có vô số nghiệm thì m-2=0
=>m=2
b: \(\Leftrightarrow x\left(m^2-16\right)=4m\)
Để phương trình có nghiệm duy nhất thì m^2-16<>0
hay \(m\notin\left\{4;-4\right\}\)
Để phương trình vô nghiệm thì m^2-16=0
=>m=4 hoặc m=-4
c: TH1: m=3
Pt sẽ là 4x-2=0
=>x=1/2
TH2: m<>3
\(\text{Δ}=4^2-4\cdot\left(-2\right)\cdot\left(m-3\right)\)
=16+8(m-3)
=8m-24+16=8m-8
Để phương trình vô nghiệm thì 8m-8<0
=>m<1
Để phương trình có nghiệm duy nhất thì 8m-8=0
=>m=1
Để phương trình có hai nghiệm phân biệt thì 8m-8>0
=>m>1
d: \(\text{Δ}=\left(-5\right)^2-4\left(2m-1\right)\)
=25-8m+4
=-8m+29
Để phương trình vô nghiệm thì -8m+29<0
=>-8m<-29
=>m>29/8
Để phương trình có nghiệm duy nhất thì -8m+29=0
=>m=29/8
Để phương trình có hai nghiệm phân biệt thì -8m+29>0
=>m<29/8
cho pt : x^2 - (2m+1)x + 2m - 4 = 0
tìm m để A = x1^2 + x2^2 - 4x1x2 + 4 đạt gtnn
x2 - (2m+1)x + 2m - 4 = 0
\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)\)
\(=4m^2-4m+17>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-6x_1x_2+4\)
\(=4m^2+4m+1-12m+28\)
\(=4m^2-8m+29=4\left(m-1\right)^2+25\ge25\)
Dấu "=" xảy ra khi m=1