Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bui Minh Quang
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 8:06

\(a,\Delta=4\left(m-1\right)^2-4\left(-2m-3\right)=4m^2-8m+4+8m+12\\ \Delta=4m^2+16>0\left(đpcm\right)\\ b,\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-4m+1-8m+8\\ \Delta=4m^2-12m+9=\left(2m-3\right)^2\ge0\left(đpcm\right)\\ c,Sửa:x^2-2\left(m+1\right)x+2m-2=0\\ \Delta=4\left(m+1\right)^2-4\left(2m-2\right)=4m^2+8m+4-8m+8\\ \Delta=4m^2+12>0\left(đpcm\right)\\ d,\Delta=4\left(m+1\right)^2-4\cdot2m=4m^2+8m+4-8m\\ \Delta=4m^2+4>0\left(đpcm\right)\\ e,\Delta=4m^2-4\left(m+7\right)=4m^2-4m+7=\left(2m-1\right)^2+6>0\left(đpcm\right)\\ f,\Delta=4\left(m-1\right)^2-4\left(-3-m\right)=4m^2-8m+4+12+4m\\ \Delta=4m^2-4m+16=\left(2m-1\right)^2+15>0\left(đpcm\right)\)

Nguyễn Hải Vân
Xem chi tiết
Vy Vy
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2020 lúc 16:28

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)

b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)

c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)

\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)

d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)

\(\Rightarrow\) Ko tồn tại m thỏa mãn

e/ \(2m\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)

f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)

g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)

h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)

Vy Vy
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:12

Để pt có 2 nghiệm dương (ko yêu cầu pb?) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2+4m-4\ge0\\x_1+x_2=2m+1>0\\x_1x_2=-m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-3\ge0\\m>-\frac{1}{2}\\m< 1\end{matrix}\right.\) \(\Rightarrow\frac{\sqrt{3}}{2}\le m< 1\)

b/ \(\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2-4\left(-2m+1\right)\ge0\\-m-2>0\\-2m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+12m\ge0\\m< -2\\m< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m\le-12\)

Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:17

c/

\(\left\{{}\begin{matrix}\Delta'=4\left(m+1\right)^2-4\left(4m+1\right)\ge0\\-m-1>0\\\frac{4m+1}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m\ge0\\m< -1\\m>-\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

d/

\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\2m-1>0\\\frac{m}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-8m+1\ge0\\m>\frac{1}{2}\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge\frac{2+\sqrt{3}}{2}\)

Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:24

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4m\ge0\\x_1+x_2=m+1>0\\x_1x_2=m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2\ge0\\m>-1\\m>0\end{matrix}\right.\) \(\Rightarrow m>0\)

f/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\x_1+x_2=\frac{2\left(3-2m\right)}{m-2}>0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\frac{3-2m}{m-2}>0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1\le m\le3\\\frac{3}{2}< m< 2\\\left[{}\begin{matrix}m< \frac{6}{5}\\m>2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Thục Trinh
2 tháng 1 2020 lúc 19:53

\(\frac{m-4}{2-m^2}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-4>0\\2-m^2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-4< 0\\2-m^2>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>4\\m< \sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m< 4\\m>\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\sqrt{2}< m< 4\)(1)

\(\frac{m-2m^2}{4-2m^2}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2m^2>0\\4-2m^2>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2m^2< 0\\m-2m^2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< \sqrt{2}\\m\left(1-2m\right)>0\end{matrix}\right.\\\left\{{}\begin{matrix}m>\sqrt{2}\\m\left(1-2m\right)< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< \sqrt{2}\\\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\1-2m>0\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\1-2m< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}m>\sqrt{2}\\\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\1-2m< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\1-2m>0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< \sqrt{2}\\\left\{{}\begin{matrix}m>0\\m< \frac{1}{2}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}m>\sqrt{2}\\m>\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< m< \frac{1}{2}\\m>\sqrt{2}\end{matrix}\right.\) (2)

\(\underrightarrow{\left(1\right)\left(2\right)}\) \(\sqrt{2}< m< \frac{1}{2}\)

Khách vãng lai đã xóa
Huy Nguyen
Xem chi tiết
Trương Huy Hoàng
16 tháng 3 2021 lúc 18:17

a, x2 - (3 - 2m)x + m2 = 0

\(\Delta\) = [-(3 - 2m)]2 - 4.1.m2 = 9 - 12m + 4m2 - 4m2 = 9 - 12m

Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 9 - 12m = 0 \(\Leftrightarrow\) m = \(\dfrac{3}{4}\)

Vậy ...

b, x2 + (2m + 1)x + m2 = 0

\(\Delta\) = (2m + 1)2 - 4.1.m2 = 4m2 + 4m + 1 - 4m2 = 4m + 1

Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 4m + 1 = 0 \(\Leftrightarrow\) m = \(\dfrac{-1}{4}\)

Vậy ...

Chúc bn học tốt!

Vy Vy
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:40

Để pt có 2 nghiệm âm (không cần phân biệt) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}< 0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

a/

\(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2-4\left(m+1\right)\ge0\\x_1+x_2=-2m+1< 0\\x_1x_2=m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-8m-3\ge0\\m>\frac{1}{2}\\m>-1\end{matrix}\right.\) \(\Rightarrow m\ge\frac{2+\sqrt{7}}{2}\)

b/

\(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2+4\left(2m-1\right)\ge0\\x_1+x_2=m-2< 0\\x_1x_2=1-2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m\ge0\\m< 2\\n< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-4\\0\le m< \frac{1}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:44

c/

\(\left\{{}\begin{matrix}\Delta=m^2-4\left(m-\frac{3}{4}\right)\ge0\\x_1+x_2=-m< 0\\x_1x_2=m-\frac{3}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+3\ge0\\m>0\\m>\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\frac{3}{4}< m\le1\end{matrix}\right.\)

d/

\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\x_1+x_2=1-2m< 0\\x_1x_2=\frac{m}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>\frac{1}{2}\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge1\)

Nguyễn Việt Lâm
8 tháng 5 2020 lúc 18:47

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\x_1+x_2=m+1< 0\\x_1x_2=m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5>0\\m< -1\\m>1\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

f/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\x_1+x_2=2< 0\left(vô-lý\right)\\x_1x_2=\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

Kem Pham
Xem chi tiết
Rimuru tempest
9 tháng 11 2018 lúc 19:45

thấy x bật nhất thì dùng biện luận theo kiểu bật nhất

thấy x bật 2 thì dùng denta

Nguyễn Lê Phước Thịnh
19 tháng 11 2022 lúc 12:07

a: =>x(m-2)(m+2)=-m+2

Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0

=>m<>2; m<>-2

Đểphương trình vô nghiệm thì m+2=0

=>m=-2

Để phương trình có vô số nghiệm thì m-2=0

=>m=2

b: \(\Leftrightarrow x\left(m^2-16\right)=4m\)

Để phương trình có nghiệm duy nhất thì m^2-16<>0

hay \(m\notin\left\{4;-4\right\}\)

Để phương trình vô nghiệm thì m^2-16=0

=>m=4 hoặc m=-4

c: TH1: m=3

Pt sẽ là 4x-2=0

=>x=1/2

TH2: m<>3

\(\text{Δ}=4^2-4\cdot\left(-2\right)\cdot\left(m-3\right)\)

=16+8(m-3)

=8m-24+16=8m-8

Để phương trình vô nghiệm thì 8m-8<0

=>m<1

Để phương trình có nghiệm duy nhất thì 8m-8=0

=>m=1
Để phương trình có hai nghiệm phân biệt thì 8m-8>0

=>m>1

d: \(\text{Δ}=\left(-5\right)^2-4\left(2m-1\right)\)

=25-8m+4

=-8m+29

Để phương trình vô nghiệm thì -8m+29<0

=>-8m<-29

=>m>29/8

Để phương trình có nghiệm duy nhất thì -8m+29=0

=>m=29/8

Để phương trình có hai nghiệm phân biệt thì -8m+29>0

=>m<29/8

Anh Phuong
Xem chi tiết
Trần Thùy Linh
21 tháng 4 2020 lúc 21:57

x2 - (2m+1)x + 2m - 4 = 0

\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)\)

\(=4m^2-4m+17>0\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-6x_1x_2+4\)

\(=4m^2+4m+1-12m+28\)

\(=4m^2-8m+29=4\left(m-1\right)^2+25\ge25\)

Dấu "=" xảy ra khi m=1