Cau 3 : xac dinh 5 so hang dau cua day so
(Un) biet Un = 2n - 1
Hỏi đáp
Cau 3 : xac dinh 5 so hang dau cua day so
(Un) biet Un = 2n - 1
U1 = 2.1 - 1 = 1
U2 = 2.2 - 1 = 3
U3 = 2.3 - 1 = 5
U4 = 2.4 - 1 = 7
U5 = 2.5 - 1 = 9
cho 4 số a b c d theo thứ tự lập thành 1 cấp số cộng và 4 số a-2, b-6, c-7, d-2 theo thứ tự là 1 cấp số nhân. Tìm a b c d
Giả sử x1, x2 là hai nghiệm của phương trình: x2 – x + A = 0 và x3, x4 là hai nghiệm của phương trình: x2 – 4x + B = 0. Tính A, B biết rằng x1, x2, x3, x4 lập thành một cấp số nhân tăng?
Cho cấp số cộng (un) và cấp số nhân (vn) thoả mãn: u1 = v1 =2, u2 = v2, v3 = u3 + 4. Xác định cấp số cộng và cấp số nhân ñó.
A = 1 + 2016 + 2016^2 + … + 2016^2016;
Ta có:
\(A=1+2016+2016^2+...+2016^{2016}\)
\(\Rightarrow2016A=2016.\left(1+2016+2016^2+...+2016^{2016}\right)\)
\(=2016+2016^2+2016^3...+2016^{2017}\)
\(\Rightarrow2016A-A=\left(2016+2016^2+2016^3...+2016^{2017}\right)-\left(1+2016+2016^2+...+2016^{2016}\right)\)
\(\Rightarrow2015A=2016^{2017}-1\)
\(\Rightarrow A=\frac{2016^{2017}-1}{2015}\)
Vậy \(A=\frac{2016^{2017}-1}{2015}\)
cho cấp số nhân:u1+u5=51, u2+u6=102 .tìm u1 ,q
\(u_2=u_1.q,u_5=u_1.q^4,u_6=u_1.q^5\) nên
\(u_1(1+q^4)=51,u_1q(1+q^4)=102\)
chia 2 vế ta được q=2, suy ra u1=3
cho csc (un) tổng ba số hạng đầu tiên =-6 và tổng các bình phương của chúng = 30. hãy tìm csc
Gọi số hạng đầu tiên là a, công sai là d. 3 số hạng đầu là a,a+d.a+2d
a+(a+d)+(a+2d)=3a+3d=-6 nên d=-a-2
Suy ra 3 số hạng đầu là a, -2, -a-4
\(a^2+(-2)^2+(-a-4)^2=2a^2+8a+20=30\)
nên a=1,d=-3 hoặc a=-5,d=3
Tìm csc có 6 số hạng, biết rằng tổng của 5 số hạng đầu = 31 và tổng của 5 số hạng sau = 62.
Gọi 6 số hạng cấp số cộng là a,a+d,a+2d,...,a+5d. Suy ra
a+(a+d)+(a+2d)+...(a+4d)=5a+(1+2+3+4)d=5a+10d=31
a+d+(a+2d)+(a+3d)+...(a+5d)=5a+(1+2+3+4+5)d=5a+15d=62
Suy ra \(d=\dfrac{31}{5},a=-\dfrac{31}{5}\)
Tìm số hạng trong khai triển nhị thức Niu-tơn \((x^3 - {2y \over x}) ^{12}\), mà tổng số mũ của x và y trong số hạng đó bằng 15
6. Tìm s
a) s - \(\frac{20}{11\times13}-\frac{20}{13\times15}-\frac{20}{15\times17}-.....-\frac{20}{53\times55}=\frac{3}{11}\)
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{39}+...+\frac{2}{s\left(s+1\right)}=\frac{2}{9}\)
( Toàn lớp 6 nha )
a) gt \(\Leftrightarrow\) s-\(10\times\left(\frac{2}{11\times13}+\frac{2}{13\times15}+...+\frac{2}{53\times55}\right)=\frac{3}{11}\)
\(\Leftrightarrow s-10\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow S-10\times\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow S=1\)
câu b hình như sai đề
Phải là \(\frac{1}{36}\) chứ ko phải \(\frac{1}{39}\)