\(C =\dfrac{4}{5}+\dfrac{20}{|3x+5|+|4y+5|+8}\)
a) \(\dfrac{3}{4}=\dfrac{3x}{20}\) b) \(\dfrac{1,2}{x+3}=\dfrac{5}{4}\) c) \(\dfrac{x^2}{32}=\dfrac{9}{8}\)
a:=>3x=15
=>x=5
b: =>x+3=0,96
=>x=-2,04
c: =>x^2=36
=>x=6 hoặc x=-6
`a, 3/4=(3x)/20`
`3x*4=3*20`
`3x*4=60`
`3x=60 \div 4`
`3x=15`
`x=15 \div 3`
`x=5`
`b, (1,2)/(x+3)=5/4`
`1,2*4=(x+3)*5`
`4,8=(x+3)*5`
`x+3= 4,8 \div 5`
`x+3=0,96`
`x=0,96-3`
`x=-2,04`
`c, (x^2)/32=9/8`
`x^2*8=32*9`
`x^2*8=288`
`x^2=288 \div 8`
`x^2=36`
`x^2=(+-6)^2`
`-> \text {x= 6 hoặc -6}`
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
\(\)a) \(\dfrac{3}{5}+\dfrac{11}{20}\) b) \(\dfrac{5}{8}-\dfrac{4}{9}\) c) \(\dfrac{9}{16}\) x \(\dfrac{4}{3}\)
d) \(\dfrac{4}{7}:\dfrac{8}{11}\) e) \(\dfrac{3}{5}+\dfrac{4}{5}:\dfrac{2}{5}\)
a) \(\dfrac{3}{5}+\dfrac{11}{20}=\dfrac{12}{20}+\dfrac{11}{20}=\dfrac{23}{20}\)
b) \(\dfrac{5}{8}-\dfrac{4}{9}=\dfrac{45}{72}-\dfrac{32}{72}=\dfrac{13}{72}\)
c) \(\dfrac{9}{16}\times\dfrac{4}{3}=\dfrac{3}{4}\)
d) \(\dfrac{4}{7}:\dfrac{8}{11}=\dfrac{4}{7}\times\dfrac{11}{8}=\dfrac{11}{14}\)
e) \(\dfrac{3}{5}+\dfrac{4}{5}:\dfrac{2}{5}=\dfrac{3}{5}+\dfrac{4}{5}\times\dfrac{5}{2}=\dfrac{3}{5}+2=\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
a)\(=\dfrac{12}{20}+\dfrac{11}{20}=\dfrac{23}{20}\)
b)\(=\dfrac{45}{72}-\dfrac{32}{72}=\dfrac{13}{72}\)
c)\(=\dfrac{9\times4}{16\times3}=\dfrac{3}{4}\)
d)\(=\dfrac{4}{7}\times\dfrac{11}{8}=\dfrac{11}{14}\)
e)\(=\dfrac{3}{5}+\dfrac{4}{2}=\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
Tìm x,y,z trong dãy tỉ số bằng nhau
1)\(\dfrac{3x}{8}=\dfrac{3y}{64}=\dfrac{3z}{216}\)và \(2x^2+2y^2.z^2=1\)
2) \(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x}\)
3) \(\dfrac{x^3+y^3}{6}=\dfrac{x^3-2y^3}{4}\)và x6 . y6 =14
4) \(\dfrac{x+4}{6}=\dfrac{3y-1}{8}=\dfrac{3y-x-5}{x}\)
5) \(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\)và x.y.z=192
6)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{x.y}{200}\)
7)\(\dfrac{x+1}{2}=\dfrac{y-1}{3}=\dfrac{z+2}{4}=\dfrac{x+y+z+2}{2x+5}\)
8) \(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)và x.y = 1200
9)\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\) và x.y.z = 22400
10)15x = -10y =6z và x.y.z = -30000
11) Cho\(\dfrac{x+1}{3}=\dfrac{y-2}{5}=\dfrac{2z+14}{9}\)và x+z=y
12) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}=\dfrac{z}{6}\).Tính M=\(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Giải hệ phương trình bằng phương pháp cộng:
a.\(\left\{{}\begin{matrix}-5x-4y=20\\\dfrac{1}{-4}x-\dfrac{1}{5}y=1\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\dfrac{3x}{4}+\dfrac{2y}{5}=2,3\\x-\dfrac{3y}{5}=0,8\end{matrix}\right.\)
a,\(\dfrac{7}{8}\)x\(\dfrac{2}{5}\)
b,\(\dfrac{9}{4}\)\(-\)\(\dfrac{5}{6}\)
c,\(\dfrac{4}{7}\)x\(\dfrac{2}{5}\)
d,\(\dfrac{3}{5}\)+2
e,4 \(-\) \(\dfrac{3}{5}\)
g,3x\(\dfrac{4}{9}\)
h,\(\dfrac{9}{5}\): 2
a. 7/8 x 2/5 =7/20
b.9/4-5/6=17/12
c.4/7x2/5=8/35
d.3/5+2=13/5
e. 4-3/5=17/5
g.3x4/9=4/3
h.9/5:2=9/10
a) \(\dfrac{14}{40}=\dfrac{7}{20}\)
b) \(\dfrac{27}{12}-\dfrac{10}{12}=\dfrac{17}{12}\)
c) \(\dfrac{8}{35}\)
d) \(\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
e) \(\dfrac{20}{5}-\dfrac{3}{5}=\dfrac{17}{5}\)
g) \(\dfrac{12}{9}=\dfrac{4}{3}\)
h) \(\dfrac{9}{5}x\dfrac{1}{2}=\dfrac{9}{10}\)
`@LQuyen`
\(\dfrac{7}{8}\times\dfrac{2}{5}=\dfrac{14}{40}\)
\(\dfrac{9}{4}-\dfrac{5}{6}=\dfrac{54}{24}-\dfrac{20}{24}=\dfrac{34}{24}\)
\(\dfrac{4}{7}\times\dfrac{2}{5}=\dfrac{8}{35}\)
\(\dfrac{3}{5}+\dfrac{2}{1}=\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
\(\dfrac{4}{1}-\dfrac{3}{5}=\dfrac{20}{5}-\dfrac{3}{5}=\dfrac{17}{5}\)
\(3\times\dfrac{4}{9}=\dfrac{12}{9}\)
\(\dfrac{9}{5}:2=\dfrac{9}{10}\)
Tìm hai số x,y biết
a/\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64};x^2+2y^2-3z^2=-650\)
b/\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6};5z-3x-4y=50\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)
$\dfrac{x-1}{2}$=$\dfrac{y+3}{4}$=$\dfrac{z-5}{6}$ và 5z - 3x - 4y = 50
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
=>\(\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{-3x-4y+5z+3-12-25}{-6-16+30}=2\)
=>x-1=4; y+3=8; z-5=12
=>x=5; y=5; z=17
5) cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\). chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
=>\(\dfrac{12x-8y}{16}=0\)
=>12x-8y=0
=>12x=8y
=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)
Lại có \(\dfrac{8y-6z}{4}=0\)
=>8y-6z=0
=>8y=6z
=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)
từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)