chứng minh vô nghiệm
\(\dfrac{x^2+2+\sqrt{x^2+1}}{\sqrt{x^2+1}+1}+3x^2-4x=0\)
Chứng minh PT sau vô nghiệm:
\(\frac{x^2+2+\sqrt{x^2+1}}{\sqrt{x^2+1}+1}+3x^2-4x=0\)
Giúp mình với :
\(\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2+4x+1}+\sqrt{x}}\)
Chứng minh nó khác 0 với ≥0
Do \(x\ge0\Rightarrow2x+2+5\sqrt{x}\ge0+2+0=2>0\Rightarrow\dfrac{1}{2x+2+5\sqrt{x}}>0\)
\(2\sqrt{x^2+4x+1}+\sqrt{x}\ge2\sqrt{0+4.0+1}+0=2>0\Rightarrow\dfrac{1}{2\sqrt{x^2+4x+1}+\sqrt{x}}>0\)
\(\Rightarrow\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2+4x+1}+\sqrt{x}}>0\)
Chứng minh các bất phương trình sau vô nghiệm :
a. \(x^2+\sqrt{x+8}\le-3\)
b. \(\sqrt{1+2\left(x-3\right)^2}+\sqrt{5-4x+x^2}< \dfrac{3}{2}\)
c. \(\sqrt{1+x^2}-\sqrt{7+x^2}>1\)
a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.
b) Vế trái có ≥ 1 ∀x ∈ R,
≥ 1 ∀x ∈ R
=> + ≥ 2 ∀x ∈ R.
Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.
c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
giải pt :
a, \(4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{16x^4+4x^2+1}=0\)
b, \(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{x^4+x^2+1}=0\)
a.
\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:
\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)
\(\Leftrightarrow3a^2=b^2\)
\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)
\(\Leftrightarrow...\)
b.
\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
Lặp lại cách làm câu a
Câu 1:
a, limx→-∞ \(\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}\)
b, limx→-∞ \(\dfrac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+2}\)
c, limx→-∞ \(\dfrac{x+\sqrt{x^2+x}}{3x-\sqrt{x^2+1}}\)
d, limx→-∞ \(\dfrac{\sqrt{x^2+x+2}+3x}{\sqrt{4x^2+1}-x+1}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}=\dfrac{1+\sqrt{1+\dfrac{2}{x^2}}}{\sqrt{8+\dfrac{5}{x}+\dfrac{2}{x^2}}}=\dfrac{1+\sqrt{1}}{\sqrt{8}}=\dfrac{\sqrt{2}}{2}\).
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Chứng minh rằng các bất phương trình sau đây vô nghiệm :
a) \(x^2+\dfrac{1}{x^2+1}< 1\)
b) \(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}< 2\)
c) \(\sqrt{x^2+1}+\sqrt{x^4-x^2+1}< 2\sqrt[4]{x^6+1}\)
a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.
b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.
Có: \(2\sqrt[4]{x^6+1}=2\sqrt[4]{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)
Đặt \(a=\sqrt{x^2+1};b=\sqrt{x^4-x^2+1}\). Ta có:
\(a+b< 2\sqrt{ab}\)\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}< 0\right)\) . Vậy BPT vô nghiệm.
gptr:
1, \(\dfrac{x}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
2, \(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)
3,\(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}=\sqrt{2}\)
Éttttt ooooo éttttt. mời các thiên tài toán học ạ
1: ĐKXĐ: x>1/2
=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)
x^2-2x+1>=0
=>x^2>=2x-1
=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)
Dấu = xảy ra khi x=1
(x^2-2x+1)(x^2+2x+3)>=0
=>x^4-4x+3>=0
=>x^4>=4x-3
=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)
=>VT>=2
Dấu = xảy ra khi x=1
2: 4x-1=x+x+2x-1
5x-2=x+2x-1+2x-1
\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)
\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)
=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)
=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)
Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)
Dấu = xảy ra khi x=1