Bài 2: Giới hạn của hàm số

Khánh Đan
12 tháng 4 lúc 20:01

undefined

Bình luận (0)
Nguyễn Việt Lâm
9 tháng 4 lúc 5:09

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x-1-\sqrt{4x-3}\right)+\left(\sqrt[3]{6x-5}-\left(2x-1\right)\right)}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{4\left(x-1\right)^2}{2x-1+\sqrt[]{4x-3}}-\dfrac{4\left(x-1\right)^2\left(2x+1\right)}{\sqrt[3]{\left(6x-5\right)^2}+\left(2x-1\right)\sqrt[3]{6x-5}+\left(2x-1\right)^2}}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{4}{2x-1+\sqrt[]{4x-3}}-\dfrac{4\left(2x+1\right)}{\sqrt[3]{\left(6x-5\right)^2}+\left(2x-1\right)\sqrt[3]{6x-5}+\left(2x-1\right)^2}\right)=-2\)

Bình luận (0)
Nguyễn Văn Hoàng
9 tháng 4 lúc 1:27

\(lim\left(x->1\right)\dfrac{-\sqrt{4x-3}+\sqrt[3]{6x-5}}{\left(x-1\right)^2}\)

Đặt \(\sqrt{4x-3}=f\left(x\right);\sqrt[3]{6x-5}=g\left(x\right)\Rightarrow g\left(x\right)^6-f\left(x\right)^6=4\left(x-1\right)^2\left(16x-13\right)\)

\(f\left(1\right)=1;g\left(1\right)=1\)

Ta có 

\(lim\left(x->1\right)\dfrac{-f\left(x\right)+g\left(x\right)}{\left(x-1\right)^2}=lim\left(x->1\right)\dfrac{g\left(x\right)^6-f\left(x\right)^6}{\left(x-1\right)^2}\cdot\dfrac{1}{g\left(x\right)^5+g\left(x\right)^4f\left(x\right)+g\left(x\right)^3f\left(x\right)^2+g\left(x\right)^2f\left(x\right)^3+g\left(x\right)f\left(x\right)^4+f\left(x\right)^5}\)

\(=lim\left(x->1\right)\dfrac{4\left(16x-3\right)}{g\left(x\right)^5+g\left(x\right)^4f\left(x\right)+g\left(x\right)^3f\left(x\right)^2+g\left(x\right)^2f\left(x\right)^3+g\left(x\right)f\left(x\right)^4+f\left(x\right)^5}\)

\(=\dfrac{4\left(16-3\right)}{1^5+1^4\cdot1+1^3\cdot1^2+1^2\cdot1^3+1\cdot1^4+1^5}=\dfrac{26}{3}\)

Bình luận (0)
Hoàng Hải Yến
7 tháng 4 lúc 17:29

Ok sau đây là 3 cách, mà mình thấy c3 chả được xài cách nào :( Cơ mà thoi kệ

undefined

Cách 3: 

undefined

P/s: Hmm, thực ra thì ban đầu mình cũng nghĩ là sử dụng ngắt VCB tương đương k được đâu, bởi nó chỉ sử dụng cho tích và thương, cơ mà nó áp dụng cho tổng và hiệu khi mà 2 hạng tử mình biến đổi ra ko tương đương nhau, vậy nên cách 1 vẫn được chấp nhận nhé. Mình sẽ dele 2 câu trả lời kia để gộp 3 cách làm 1 câu trl cho tiện.

Bình luận (0)
Pham Tien Dat
4 tháng 4 lúc 15:13

dùng cái gõ công thức đi bạn, đọc khó hiểu quá

Bình luận (0)
Nguyễn Việt Lâm
23 tháng 3 lúc 23:09

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1+1-\sqrt[]{1-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{x}{1+\sqrt[]{1-x}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[3]{\left(x+1\right)^3}+\sqrt[3]{x+1}+1}+\dfrac{1}{1+\sqrt[]{1-x}}\right)=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)

Bình luận (0)
Pham Tien Dat
23 tháng 3 lúc 21:59

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4+\dfrac{1}{x^2}}-\sqrt{\dfrac{1}{x}+\dfrac{5}{x^2}}}{2-\dfrac{7}{x}}=1\)

Bình luận (0)
Hoàng Hải Yến
22 tháng 3 lúc 0:14

\(=\lim\limits_{n\rightarrow-3}\dfrac{\sqrt{6-n}-3}{n+3}+\lim\limits_{n\rightarrow-3}\dfrac{2-\sqrt{1-n}}{n+3}+\lim\limits_{n\rightarrow-3}\dfrac{2n+5+1}{n+3}\)

\(=\lim\limits_{n\rightarrow-3}\dfrac{-\left(n+3\right)}{n+3}+\lim\limits_{n\rightarrow-3}\dfrac{n+3}{n+3}+\lim\limits_{n\rightarrow-3}\dfrac{2\left(n+3\right)}{n+3}\)

\(=-1+1+2=2\)

Bình luận (2)
Sigma
14 tháng 3 lúc 9:38

\(\lim\limits_{x\rightarrow\infty}\left(\sqrt{x+1}-\sqrt{x}\right)=\lim\limits_{x\rightarrow\infty}\dfrac{1}{\sqrt{x+1}+\sqrt{x}}=\dfrac{1}{\infty}=0\).

Bình luận (0)
Trần Thanh Phương
14 tháng 3 lúc 9:59

a) \(lim_{x\rightarrow+\infty}\left(\sqrt{x+1}-\sqrt{x}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x+1}+\sqrt{x}}\right)=0\)

b) \(lim_{x\rightarrow+\infty}\left(\sqrt{x+\sqrt{x}}-\sqrt{x}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{x+\sqrt{x}-x}{\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)\)

\(=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{\dfrac{x+\sqrt{x}}{x}}+1}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{1}{\sqrt{x}}}+1}\right)=\dfrac{1}{2}\)

c) \(lim_{x\rightarrow-\infty}\left(\sqrt{3x^2+x+1}+x\sqrt{3}\right)=lim_{x\rightarrow-\infty}\left(\dfrac{x+1}{\sqrt{3x^2+x+1}-x\sqrt{3}}\right)\)

\(=lim_{x\rightarrow-\infty}\left(\dfrac{1+\dfrac{1}{x}}{\sqrt{\dfrac{3x^2+x+1}{x^2}}-\dfrac{x\sqrt{3}}{x^2}}\right)\)

\(=lim_{x\rightarrow-\infty}\left(\dfrac{1+\dfrac{1}{x}}{\sqrt{3+\dfrac{1}{x}+\dfrac{1}{x^2}}-\dfrac{\sqrt{3}}{x}}\right)=\dfrac{1}{\sqrt{3}}\)

d) \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+2x+4}-\sqrt{x^2-2x+4}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{4x}{\sqrt{x^2+2x+4}+\sqrt{x^2-2x+4}}\right)\)

\(=lim_{x\rightarrow+\infty}\left(\dfrac{4}{\sqrt{1+\dfrac{2}{x}+\dfrac{4}{x^2}}+\sqrt{1-\dfrac{2}{x}+\dfrac{4}{x^2}}}\right)=\dfrac{4}{2}=2\)

Bình luận (0)
Sigma
13 tháng 3 lúc 15:41

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}=\dfrac{1+\sqrt{1+\dfrac{2}{x^2}}}{\sqrt{8+\dfrac{5}{x}+\dfrac{2}{x^2}}}=\dfrac{1+\sqrt{1}}{\sqrt{8}}=\dfrac{\sqrt{2}}{2}\).

 

Bình luận (3)
Anh Thư Thái
24 tháng 3 lúc 18:29

undefined

Bình luận (0)
Anh Thư Thái
24 tháng 3 lúc 18:32

undefined

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN