Tìm giới hạn :
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{\left(x+a_1\right)\left(x+a_1\right)\left(x+a_1\right)}-x\right)\)
Tìm giới hạn :
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{\left(x+a_1\right)\left(x+a_1\right)\left(x+a_1\right)}-x\right)\)
Giới hạn trên có dạng \(\infty-\infty\), ta đưa nó về dạng \(\frac{0}{0}\) nhờ phép biến đổi sau :
Đặt \(x=\frac{1}{y}\), khi \(x\rightarrow+\infty\) thì \(y\rightarrow0\)
Ta có : \(L=\lim\limits_{y\rightarrow0}\frac{\sqrt[3]{\left(1+a_1y\right)\left(1+a_2y\right)\left(1+a_3y\right)}-1}{y}\)
Áp dụng phép đổi biến \(x=\frac{1}{y}\) ta có "
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[n]{\left(x+a_1\right)\left(x+a_1\right)......\left(x+a_1\right)}-x\right)=\frac{a_1+a_2+....+a_n}{n}\)
Cho m là số nguyên dương. Tìm giới hạn sau :
\(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m}{1-x^m}-\frac{1}{1-x}\right)\)
Ta có \(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m-\left(1+x+x^2+.....+x^{m-1}\right)}{1-x^m}\right)\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)+\left(1-x^2\right)+.....+\left(1-x^{m-1}\right)}{1-x^m}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)\left[1+\left(1+x\right)+.....+\left(1+x+x^2+.....+x^{m-2}\right)\right]}{\left(1-x\right)\left(1+x+x^2+.....+x^{m-1}\right)}\)
\(=\frac{1+2+3+....+\left(m-1\right)}{m}=\frac{\left(m-1\right)m}{2m}=\frac{m-1}{2}\)
xét hai số thực thay đổi \(x\ne0,y\ne0\)thỏa mãn \(xy\left(x+y\right)=x^2-xy+y^2.\)tìm giá trị lớn nhất của biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
Cho a, b là hai số cho trước với \(b\ne0\), tìm các giới hạn sau :
1. \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}\)
2. \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}\)
1. Ta có : \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}=\lim\limits_{x\rightarrow0}\left(\frac{\sin ax}{\sin bx}.\frac{\cos ax}{\cos bx}\right)=\lim\limits_{x\rightarrow0}\frac{\sin ax}{\sin bx}=\lim\limits_{x\rightarrow0}\left(\frac{\frac{\sin ax}{ax}}{\frac{\sin bx}{bx}}.\frac{ax}{bx}\right)=\frac{a}{b}\frac{\lim\limits_{x\rightarrow0}\frac{\sin ax}{ax}}{\lim\limits_{x\rightarrow0}\frac{\sin bx}{bx}}=\frac{a}{b}\frac{\lim\limits_{y\rightarrow0}\frac{\sin y}{y}}{\lim\limits_{z\rightarrow0}\frac{\sin z}{z}}=\frac{a}{b}\)
2. Ta có : \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\sin^2\frac{ax}{2}}{x^2}=\lim\limits_{x\rightarrow0}\left[\left(\frac{\sin\frac{ax}{2}.\sin\frac{ax}{2}}{\frac{ax}{2}.\frac{ax}{2}}\right).\frac{a^2}{2}\right]\)
\(=\frac{a^2}{2}\left(\lim\limits_{y\rightarrow0}\frac{\sin y}{y}\right)^2=\frac{a^2}{2}\)
\(\lim\limits_{x\rightarrow0}\ln\left(1+4arcsinx+7arcsin^2x\right)\frac{1}{tanx}\)
mọi người giúp mình với
Mấy bạn cho mình hỏi:
Câu tính lim(x→-∞)(-4x3+4x) theo kết quả là -∞ mà mình tính ra +∞ là sao vậy??
Nếu ra -∞ cho mình hỏi nguyên do với!!!
Cảm ơn rất nhiều.
tính Lim(x-->0)\(\frac{1}{\sqrt[3]{\left(x+1\right)^2+\sqrt[3]{x+1}+1}}\)
Ta có
\(lim_{x-->x0}=\frac{1}{\sqrt[2]{\left(0+1\right)^2+\sqrt[2]{0+1}+1}}=\frac{1}{\sqrt[2]{1^2+\sqrt[2]{1}+1}}=\frac{1}{\sqrt[2]{4}}=\frac{1}{2}\)
tìm các giá trị của a và b sao cho f luôn liên tục
f(x)=
\(\frac{x^2-4}{x-2}\) nếu x<2
ax2 - bx - 3 nếu 2<= x <3
2x-a+b nếu x>=3
limx->1 \(\frac{x^{1000}-1}{x-1}\)