tinh lim 2+4+...+2n/n^2+1
tinh lim 2+4+...+2n/n^2+1
Tìm giới hạn :
\(L=\lim\limits_{x\rightarrow1}\frac{x+x^2+x^3+x^4+x^5+x^6-6}{x+x^2+x^3+x^4+x^5-5}\)
\(L=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)+\left(x^2-1\right)+\left(x^3-1\right)+\left(x^4-1\right)+\left(x^5-1\right)+\left(x^6-1\right)}{\left(x-1\right)+\left(x^2-1\right)+\left(x^3-1\right)+\left(x^4-1\right)+\left(x^5-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[1+\left(x+1\right)+\left(x^2+x+1\right)+...+\left(x^5+x^4+x^3+x^2+x+1\right)\right]}{\left(x-1\right)\left[1+\left(x+1\right)+\left(x^2+x+1\right)+...+\left(x^4+x^3+x^2+x+1\right)\right]}\)
\(=\lim\limits_{1\rightarrow x}\frac{1+\left(x+1\right)+\left(x^2+x+1\right)+.....+\left(x^5+x^4+x^3+x^2+x+1\right)}{1+\left(x+1\right)+\left(x^2+x+1\right)+.....+\left(x^4+x^3+x^2+x+1\right)}\)
\(=\frac{1+2+....+6}{1+2+....+5}=\frac{\frac{6\left(5+1\right)}{2}}{\frac{5\left(5+1\right)}{2}}=\frac{7}{5}\)
Cho n là số nguyên dương \(\ge2\). Tìm giới hạn sau :
\(L=\lim\limits_{x\rightarrow1}\frac{x^n-nx+n-1}{\left(x-1\right)^2}\)
Ta có \(\frac{x^n-nx+n-1}{\left(x-1\right)^2}=\frac{\left(x^n-1\right)-n\left(x-1\right)}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(x^{n-1}+x^{n-1}+....+x+1-n\right)}{\left(x-1\right)^2}\) (1)
Từ (1) suy ra :
\(L=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+.....+x-\left(n-1\right)}{x-1}\) (2)
\(L=\lim\limits_{x\rightarrow1}\frac{\left(x^{n-1}-1\right)+\left(x^{n-2}-1\right)+.....+\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[\left(x^{n-1}+x^{n-3}+.....+x+1\right)+.....+\left(x+1\right)+1\right]}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left[1+\left(x+1\right)+....+\left(x^{n-2}+x^{n-3}+.....+x+1\right)\right]\)
\(=1+2+....+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Tìm giới hạn :
\(\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan^3x-3\tan x}{\cos\left(x+\frac{\pi}{6}\right)}\)
\(L=\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan^3x-3\tan x}{\cos\left(x+\frac{\pi}{6}\right)}=\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan x\left(\tan^2x-3\right)}{\cos\left(x+\frac{\pi}{6}\right)}\)
\(=\sqrt{3}\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\left(\tan x-\sqrt{3}\right)\left(\tan x+\sqrt{3}\right)}{\sin\left(\frac{\pi}{3}-x\right)}=\sqrt{3}.2\sqrt{3}\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan x-\sqrt{3}}{\sin\left(\frac{\pi}{3}-x\right)}\)
\(=6\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\sin\left(\frac{\pi}{3}-x\right)}{\cos x.\cos\frac{\pi}{3}\sin\left(\frac{\pi}{3}-x\right)}=-12\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{1}{\cos x}=-24\)
Cho m và n là các hệ số nguyên dương \(\ge2\) và khác nhau. Tìm giới hạn sau :
\(L=\lim\limits_{x\rightarrow0}\frac{\left(1+mx\right)^n-\left(1+nx\right)^m}{x^2}\left(1\right)\)
Áp dụng công thức khai triển nhị thức Newton, ta có :
\(\left(1+mx\right)^n=1+C_n^1\left(mx\right)+C_n^2\left(mx\right)^2+.....C_n^n\left(mx\right)^n\)
\(\left(1+nx\right)^m=1+C_m^1\left(nx\right)+C_m^2\left(nx\right)+....+C_m^m\left(nx\right)^m\)
Mặt khác ta có : \(C_n^1\left(mx\right)=C_n^1\left(nx\right)=mnx\)
\(C_n^2\left(mx\right)^2=\frac{n\left(n-1\right)}{2}m^2x^2;C_m^2\left(nx\right)^2=\frac{m\left(m-1\right)}{2}n^2x^2;\)
Từ đó ta có :
\(L=\lim\limits_{x\rightarrow0}\frac{\left[\frac{n\left(n-1\right)}{2}m^2-\frac{m\left(m-1\right)}{2}n^2\right]x^2+\alpha_3x^3+\alpha_4x^4+....+\alpha_kx^k}{x^2}\left(2\right)\)
Từ (2) ta có : \(L=\lim\limits_{x\rightarrow0}\left[\frac{mn\left(n-m\right)}{2}+\alpha_3x+\alpha_4x^2+....+\alpha_kx^{k-2}\right]=\frac{mn\left(n-m\right)}{2}\)
Các bạn giải giúp mk nhanh nha.....thank you very much
2, \(\mathop {\lim }\limits\frac{1+2+2^2+...+2^n}{1+3+3^2+...+3^n}=\mathop {\lim }\limits\frac{\dfrac{2^{n+1}-1}{2-1}}{\dfrac{3^{n+1}-1}{3-1}}=2.\mathop {\lim }\limits\dfrac{2^{n+1}-1}{3^{n+1}-1}=2.\mathop {\lim }\limits\frac{\left (\dfrac{2}{3} \right )^{n+1}-\dfrac{1}{3^{n+1}}}{1-\dfrac{1}{3^{n+1}}}=2.0=0\)
Tìm số hạng tổng quát của dãy và tìm lim un
cho dãy số (un) với un=\(\frac{n}{3^n}\).
a)chứng minh rằng \(\frac{u_{n+1}}{u_n}\le\frac{2}{3}\) với mọi n .
b) bằng phương pháp quy nạp , chứng minh rằng \(0\le u_n\le\left(\frac{2}{3}\right)^n\) với mọi n
cho dãy số (un) với un=\(\frac{n}{3^n}\).
a)chứng minh rằng \(\frac{u_{n+1}}{u_n}\le\frac{2}{3}\) với mọi n .
b) bằng phương pháp quy nạp , chứng minh rằng \(0\le u_n\le\left(\frac{2}{3}\right)^n\) với mọi n
cho dãy số (un) với un=\(\frac{n}{3^n}\).
a)chứng minh rằng \(\frac{u_{n+1}}{u_n}\le\frac{2}{3}\) với mọi n .
b) bằng phương pháp quy nạp , chứng minh rằng \(0\le u_n\le\left(\frac{2}{3}\right)^n\) với mọi n
Đề bài không rõ ràng. n ở đây là tự nhiên, nguyên hay là chơi luôn cả R