Cho m là số nguyên dương. Tìm giới hạn sau :
\(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m}{1-x^m}-\frac{1}{1-x}\right)\)
Cho m là số nguyên dương. Tìm giới hạn sau :
\(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m}{1-x^m}-\frac{1}{1-x}\right)\)
Ta có \(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m-\left(1+x+x^2+.....+x^{m-1}\right)}{1-x^m}\right)\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)+\left(1-x^2\right)+.....+\left(1-x^{m-1}\right)}{1-x^m}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)\left[1+\left(1+x\right)+.....+\left(1+x+x^2+.....+x^{m-2}\right)\right]}{\left(1-x\right)\left(1+x+x^2+.....+x^{m-1}\right)}\)
\(=\frac{1+2+3+....+\left(m-1\right)}{m}=\frac{\left(m-1\right)m}{2m}=\frac{m-1}{2}\)
lim\(\frac{\sqrt[3]{1+5x}\sqrt{1+3x}-10}{x}\)( x -> 0)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{e^{5x+3}-e^3}{2x}\)
\(L=\lim\limits_{x\rightarrow0}\frac{e^{5x+3}-e^3}{2x}=\lim\limits_{x\rightarrow0}\left(\frac{e^{5x}-1}{5x.\frac{2}{5}}.e^3\right)=\lim\limits_{x\rightarrow0}\left(\frac{e^{5x}-1}{5x}.\frac{5e^3}{2}\right)=1.\frac{5e^3}{2}=\frac{5e^3}{2}\)
giải giúp em mấy bài tập bên dưới
Bài 2:
Khai triển tử số và mẫu số ta có:
\(\frac{x^4-10x^3+35x^2-50x+24}{256x^4-256x^3+96x^2-16x+1}\)
Nhân cả tử và mẫu với \(\frac{1}{x^4}\) ta có:
\(\frac{1-\frac{10}{x}+\frac{35}{x^2}-\frac{50}{x^3}+\frac{24}{x^4}}{256-\frac{256}{x}+\frac{96}{x^2}-\frac{16}{x^3}+\frac{1}{x^4}}\)
Vậy ta tính dc giới hạn là \(\frac{1}{256}\)
Bài 3:
Ta có: \(\left\{\begin{matrix}\left(2x-3\right)^{20}\in O\left(x^{20}\right)\\\left(3x-3\right)^{20}\in O\left(x^{20}\right)\\\left(2x+1\right)^{30}\in O\left(x^{30}\right)\end{matrix}\right.\). Khi đó giới hạn
\(\lim\limits_{x\rightarrow+\infty}\frac{\left(2x-3\right)^{20}\left(3x-3\right)^{20}}{\left(2x+1\right)^{50}}\) tương đương với
\(\lim\limits_{x\rightarrow+\infty}\ \frac{x^{40}}{x^{50}}=\lim\limits_{x\rightarrow+\infty}\ \frac{1}{x^{10}}=0\)
Bài 1: \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+x^2}-1}{x^2}\)
Bài 2: \(\lim\limits_{x\rightarrow+\infty}\frac{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)}{\left(4x-1\right)^4}\)
Bài 3:\(\lim\limits_{x\rightarrow+\infty}\frac{\left(2x-3\right)^{20}\left(3x-3\right)^{20}}{\left(2x+1\right)^{50}}\)
P/s: hoc24 hạn chế đăng câu hỏi bằng hình ảnh nhé, còn n~ t/h gấp thì bn lên đăng thẳng 1 tí
Bài 1: Áp dụng khai triển Taylor ta có:
\(\lim _{x\to 0}\left(\frac{\sqrt[3]{1+x^2}-1}{x^2}\right) \)\( = \lim _{x\to 0}\left(\frac{\left(1+\frac{x^2}{3}+O\left(x^2\right)\right)-1}{x^2}\right) \)
\(= \lim _{x\to 0}\left(\frac{\frac{x^2}{3}+O\left(x^2\right)}{x^2}\right) = {\frac{1}{3}} \)
Cho a, b là hai số cho trước với \(b\ne0\), tìm các giới hạn sau :
1. \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}\)
2. \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}\)
1. Ta có : \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}=\lim\limits_{x\rightarrow0}\left(\frac{\sin ax}{\sin bx}.\frac{\cos ax}{\cos bx}\right)=\lim\limits_{x\rightarrow0}\frac{\sin ax}{\sin bx}=\lim\limits_{x\rightarrow0}\left(\frac{\frac{\sin ax}{ax}}{\frac{\sin bx}{bx}}.\frac{ax}{bx}\right)=\frac{a}{b}\frac{\lim\limits_{x\rightarrow0}\frac{\sin ax}{ax}}{\lim\limits_{x\rightarrow0}\frac{\sin bx}{bx}}=\frac{a}{b}\frac{\lim\limits_{y\rightarrow0}\frac{\sin y}{y}}{\lim\limits_{z\rightarrow0}\frac{\sin z}{z}}=\frac{a}{b}\)
2. Ta có : \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\sin^2\frac{ax}{2}}{x^2}=\lim\limits_{x\rightarrow0}\left[\left(\frac{\sin\frac{ax}{2}.\sin\frac{ax}{2}}{\frac{ax}{2}.\frac{ax}{2}}\right).\frac{a^2}{2}\right]\)
\(=\frac{a^2}{2}\left(\lim\limits_{y\rightarrow0}\frac{\sin y}{y}\right)^2=\frac{a^2}{2}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
Ta có : \(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x=\lim\limits_{x\rightarrow+\infty}\left(1-\frac{1}{1+x}\right)^x\)
Đặt \(-\frac{1}{1+x}=\frac{1}{t}\Rightarrow\begin{cases}x=-\left(1+t\right)\\x\rightarrow+\infty;t\rightarrow-\infty\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow-\infty}\left(1+\frac{1}{t}\right)^{-\left(1+t\right)}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)^{1+t}}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)\left(1+\frac{1}{t}\right)^t}=\frac{1}{1.e}=\frac{1}{e}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow e}\frac{\ln x-1}{x-e}\)
Đặt \(t=x-e\Rightarrow\begin{cases}x=t+e\\x\rightarrow e;t\rightarrow0\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{\ln\left(t+e\right)-\ln e}{t}=\lim\limits_{t\rightarrow0}\frac{\ln\left(\frac{t+e}{e}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{\ln\left(1+\frac{t}{e}\right)}{\frac{t}{e}}\right]=\frac{1}{e}\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}\)
\(L=\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}=\lim\limits_{x\rightarrow0}\frac{\left(e^x-1\right)\left(\sqrt{x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\left[\frac{e^x-1}{x}.\left(\sqrt{x+1}-1\right)\right]=1.0=0\)
\(\lim\limits_{x\rightarrow0}\ln\left(1+4arcsinx+7arcsin^2x\right)\frac{1}{tanx}\)
mọi người giúp mình với
Tìm \(\lim_{x\to 1}\frac{\sqrt[7]{2-x}-1}{x-1}\)
Đặt \(t=\sqrt[7]{2-x}\rightarrow x=2-t^7.x\rightarrow1\Rightarrow t\rightarrow1\)
\(\Rightarrow lim_{t\rightarrow1}\dfrac{t-1}{-\left(t^7-1\right)}=lim_{x\rightarrow1}\dfrac{t-1}{-\left(t-1\right)\left(t^6+t^5+t^4+t^3+t^2+t+1\right)}\)\(=lim_{t\rightarrow1}\dfrac{-1}{t^6+t^5+t^4+t^3+t^2+t+1}=-\dfrac{1}{7}\)