Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD là đáy lớn. Gọi M,N là trung điểm lần lượt của BC và CD.Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(SMN) và (SAD)
c,(SAB) và (SCD)
d,(SMN) và (SAC)
e,(SMN) và (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N là trung điểm của SB và SD,P thuộc SC sao cho PC<PS. Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(MNP) và (SBD)
c,(MNP) và (SAC)
d,(MNP) và (SAB)
e,(MNP) và (SAD)
f,(MNP) và (ABCD)
1.Cho hình chóp SA..ABCD có đáy ABCD là hình bình hành. Gọi E là trung điểm của SC.Tìm giao tuyến của 2 mặt phẳng (ABE) và (SBD)
2.Cho tứ diện ABCD. Gọi I,J lần lượt là trung điểm của AC và BC, K thuộc BD sao cho KD<KB. Tìm giao tuyến của 2 mặt phẳng:
a,(IJK) và (ACD)
b,(IJK) và (ABD)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)