CM:
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\ge2\)
Biết a; b; c; d >0
Cho các số dương a,b,c,d. Chứng minh :
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge2\)
Bài làm :
Ta có : \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\left(1\right)\)
Áp dụng BĐT (1) ta có :
\(\dfrac{a}{b+c}+\dfrac{c}{d+a}=\dfrac{a^2+ad+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\dfrac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\left(2\right)\)
Tương tự : \(\dfrac{b}{c+d}+\dfrac{d}{a+b}\ge\dfrac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\left(3\right)\)
Cộng các về của các BĐT (2) và (3) ta được :
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2\left(2a^2+2b^2+2c^2+2d^2+2ad+2bc+2ab+2cd\right)}{\left(a+b+c+d\right)^2}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2]}{\left(a+b+c+d\right)^2}=2B\)
Ta dễ dàng chứng minh được : \(B\ge1\)
Thật vậy :
\(\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2}{\left(a+b+c+d\right)^2}\ge1\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(d+a\right)^2\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
\(\Rightarrowđpcm\)
Dấu đằng thức xảy ra : \(\Leftrightarrow a=c;b=d\)
Cho 4 số dương,cmr: \(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\ge2\)
Giúp với mai thi rồi :
Cho a,b,c,d dương . CMR : \(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge2\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{da+db}\)
\(\geq \frac{(a+b+c+d)^2}{ab+ac+bc+bd+cd+ca+da+db}=\frac{(a+b+c+d)^2}{ab+cd+2ac+2bd+bc+da}\) (1)
Ta có:
\((a+b+c+d)^2=a^2+b^2+c^2+d^2+2ac+2bd+2(a+c)(b+d)\)
\(=a^2+b^2+c^2+d^2+2ac+2bd+2ab+2ad+2bc+2cd\)
Áp dụng BĐT AM-GM:
\(a^2+c^2\geq 2ac; b^2+d^2\geq 2bd\)
\(\Rightarrow (a+b+c+d)^2\geq 4ac+4bd+2ab+2ad+2bc+2cd\)
\(\Leftrightarrow (a+b+c+d)^2\geq 2(ab+cd+2ac+2bd+bc+da)\) (2)
Từ (1); (2) suy ra :
\(\text{VT}\geq \frac{2(ab+cd+2ac+2bd+bc+da)}{ab+cd+2ac+2bd+bc+da}=2\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=d\)
cho \(\dfrac{a}{b}\) =\(\dfrac{c}{d}\) cm rằng
a) \(\dfrac{a}{a-b}\) =\(\dfrac{c}{c-d}\) b)\(\dfrac{a}{b}\) =\(\dfrac{a+c}{b+d}\) c) \(\dfrac{a}{3a+d}\) =\(\dfrac{c}{3c+d}\) d)\(\dfrac{a.c}{b.d}\) =\(\dfrac{a^2+c^2}{b^2+c^2}\) e)\(\dfrac{a.b}{c.d}\) =\(\dfrac{a^2-b^2}{c^2-d^2}\) f)\(\dfrac{a.b}{c.d}\) =\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mn giúp mk vs ạ! thanks
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
Chứng minh
\(\dfrac{a}{\sqrt{b^2+c^2+d^2}}+\dfrac{b}{\sqrt{c^2+d^2+a^2}}+\dfrac{c}{\sqrt{d^2+a^2+b^2}}+\dfrac{d}{\sqrt{a^2+b^2+c^2}}\ge2\)
Cho bốn số thực dương a; b ; c và d. Chứng minh rằng :
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\ge2\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Đặt \(P=\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\)
\(P=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{ac+cd}+\dfrac{d^2}{ad+bd}\)
\(P\ge\dfrac{\left(a+b+c+d\right)^2}{ab+2ac+bc+2bd+cd+ad}=\dfrac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)
\(P\ge\dfrac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Cho các số dương a,b,c .Chứng minh rằng bất đẳng thức
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+d}}+\sqrt{\dfrac{c}{d+a}}+\sqrt{\dfrac{d}{a+b}}\)\(\ge2\)
Đặt: A=a/(b+c)+b/(c+d)+c/(d+a)+d/(a+b)
. B=b/(b+c)+c/(c+d)+d/(d+a)+a/(a+b)
. C=c/(b+c)+d/(c+d)+a/(d+a)+b/(a+b)
Ta có: B+C=4
Áp dụng Cosôsi và BĐT quen thuộc: 1/x+1/y >= 4/(x+y) với x,y dương ta có:
A+B=(a+b)/(b+c)+(b+c)/(c+d)+
+(c+d)/(d+a)+(d+a)/(a+b) >=4
A+C =(a+c).[1/(b+c)+1/(d+a)] +(b+d).[1/(a+b)+1/(c+d)]
>= 4(a+c)/(b+c+d+a) +4(b+d)/(a+b+c+d)=4
Do đó : 2A+B+C >= 8
Mà B+C=4 nên A >= 2
Bài 1. Cho a, b, c, d \(\in\) N*.
Chứng tỏ rằng: \(M=\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{b+c+d}+\dfrac{d}{a+c+d}\) có giá trị không là số nguyên.
Bài 2. Cho a, b \(\in\) N*. Chứng tỏ rằng:
a)\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
b)\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu
a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b
b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)
Nhân vế với vế ta được :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)
Dấu "="xảy ra tại a=b
Bài 1.
Vì a, b, c, d \(\in\) N*, ta có:
\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)
\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)
\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)
Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.
Vậy M không có giá trị là số nguyên.
Bài 1 :
Xét BĐT : \(\dfrac{m}{n}< \dfrac{m+x}{n+x}\) , với x > 0 và m<n
<=>m(n+x) < n(m+x)
<=>mn+mx < mn + nx
<=> mx < nx <=> m<n ( hiển nhiên đúng )
* Chứng minh M > 1
Ta có : \(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
\(\dfrac{b}{b+a+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d}\)
\(\dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\)
Cộng vế với vế ta suy ra :
M > \(\dfrac{a+b+c+d}{a+b+c+d}=1\) (*)
* Chứng minh A < 2
\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)
\(\dfrac{b}{b+a+d}< \dfrac{b+c}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}< \dfrac{c+a}{a+b+c+d}\)
\(\dfrac{d}{a+c+d}< \dfrac{d+b}{a+b+c+d}\)
Cộng vế với vế => M < 2 (**)
Từ (*) và (**) => 1<M<2 => M không có giá trị nguyên
từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.CM:\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\dfrac{a+b}{a}=\dfrac{c+d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)