cho 4 số dương a, b, c, d. chứng minh \(\dfrac{a+b}{b+c+d}+\dfrac{b+c}{c+d+a}+\dfrac{c+d}{d+a+b}+\dfrac{d+a}{a+b+c}\ge\dfrac{8}{3}\)
Cho a,b,c là các số thực dương
CMR
\(1\le\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}\le2\)
Cho a,b,c là các số thực thỏa mãn a+b+c+ab+ac+bc=6.
a,Tìm GTLN của P=abc
b,CMR \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}\dfrac{>}{ }\dfrac{64}{a+b+c+d}\) với a,b,c,d là các số dương
Cho a,b,c,d,A,B,C,D là các số nguyên dương và \(\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}=\dfrac{d}{D}\)
CMR \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Giúp mình với các cao nhân
cho a,b,c dương. CMR: \(\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Cho a, b, c, d là các số dương. Chứng minh: \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)
CMR: Với các số thực dương a;b;c thì\(\dfrac{a^3+2abc+b^3}{c^2+ab}+\dfrac{a^3+2abc+c^3}{b^2+ac}+\dfrac{b^3+2abc+c^3}{a^2+bc}\ge2\left(a+b+c\right)\)
Cho các số dương a,b,c,d biết \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\le1.CMRabcd\le\dfrac{1}{81}\)
Cho a, b, c, d là các số dương. Chứng minh rằng:
\(\sqrt{\dfrac{a}{b+c+d}}+\sqrt{\dfrac{b}{c+d+a}}+\sqrt{\dfrac{c}{d+a+b}}+\sqrt{\dfrac{d}{a+b+c}}>2\)