1)Cho a,b,c lần lượt là độ dài các cạnh BC,CA,AB của tam giác ABC. CMR \(\sin\dfrac{A}{2}\le\dfrac{a}{2\sqrt{bc}}\)
2)Cho a,b,c,d là các số thực tổng bằng 1. CMR: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\ge\dfrac{1}{2}\)
Cho a,b,c,d,A,B,C,D là các số nguyên dương và \(\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}=\dfrac{d}{D}\)
CMR \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Giúp mình với các cao nhân
Cho các số dương a,b,c,d biết \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\le1.CMRabcd\le\dfrac{1}{81}\)
Cho ba số thực a,b,c sao cho \(1\le a\le2\),\(1\le b\le2\),\(1\le c\le2\)
Chứng minh \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\le7\)
Cho a,b,c là các số thực thỏa mãn a+b+c+ab+ac+bc=6.
a,Tìm GTLN của P=abc
b,CMR \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}\dfrac{>}{ }\dfrac{64}{a+b+c+d}\) với a,b,c,d là các số dương
Cho 4 số dương,cmr: \(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\ge2\)
Cho a, b, c là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR: \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ba}\le\dfrac{a+b+c}{4}\)
Cho a, b, c, d là các số thực dương có tổng bằng 1. Chứng minh rằng: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}+\dfrac{d^2}{d+a}\ge\dfrac{1}{2}\)
Cho các số dương a, b, c thỏa mãn: a+b+c=1. CMR: \(4.\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+9\)