Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quỳnh Hương
Xem chi tiết
Mysterious Person
17 tháng 8 2018 lúc 13:27

đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html

Lê Anh Ngọc
Xem chi tiết
liluli
Xem chi tiết
Hồng Phúc
1 tháng 7 2021 lúc 22:07

1.

\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)

\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)

\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)

\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)

\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)

Sao t lại đc như này v, ai check hộ phát

Anh Nguyễn Vân
Xem chi tiết
Đặng Thị Huyền Trang
7 tháng 11 2017 lúc 22:11

bạn áp dụng hệ thức lượng trong tam giác vuông nha

DƯƠNG PHAN KHÁNH DƯƠNG
8 tháng 11 2017 lúc 18:33

Định lý sin đã có sẵn cần chứng minh chi nữa :))

Mysterious Person
17 tháng 8 2018 lúc 13:26

bài này mk làm rồi ; giờ lm biến chép lại . nên bn xem trong này nha .

https://hoc24.vn/hoi-dap/question/639032.html

prayforme
Xem chi tiết
Akai Haruma
2 tháng 3 2018 lúc 1:06

Lời giải:

Đường tròn

Kéo dài $OA$ cắt $(O)$ tại $D$

Do $AD$ là đường kính nên $ABD$ vuông tại $B$

\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)

Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)

Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)

Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)

Lê Anh Ngọc
Xem chi tiết
Phạm Minh Quang
10 tháng 5 2021 lúc 15:24

Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)

\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)

Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)

\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)

Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 9:16

\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)

\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)

\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)

\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)

Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)

\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

\(b,\) Không thể suy ra đẳng thức

jenny
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 13:09

Kẻ AH⊥BC tại H, BK⊥AC tại K

Xét ΔAHB vuông tại H có 

\(\sin\widehat{B}=\dfrac{AH}{AB}\)

Xét ΔAHC vuông tại H có

\(\sin\widehat{C}=\dfrac{AH}{AC}\)

Ta có: \(\dfrac{\sin\widehat{B}}{\sin\widehat{C}}=\dfrac{AH}{AB}\cdot\dfrac{AC}{AH}=\dfrac{AC}{AB}=\dfrac{b}{c}\)

\(\Leftrightarrow\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)(1)

Xét ΔABK vuông tại K có 

\(\sin\widehat{A}=\dfrac{BK}{AB}\)

Xét ΔBCK vuông tại K có 

\(\sin\widehat{C}=\dfrac{BK}{BC}\)

Ta có: \(\dfrac{\sin\widehat{A}}{\sin\widehat{C}}=\dfrac{BK}{AB}\cdot\dfrac{BC}{BK}=\dfrac{BC}{AB}=\dfrac{a}{c}\)

\(\Leftrightarrow\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)

Từ (1) và (2) suy ra \(\dfrac{a}{\sin\widehat{A}}=\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)

phamthiminhanh
Xem chi tiết
Nguyễn Ngọc Lộc
28 tháng 6 2021 lúc 21:44

Ta có : \(S_{ABC}=\dfrac{1}{2}bc.sinA=\dfrac{1}{2}acSinB=\dfrac{1}{2}abSinC\)

\(\Rightarrow bc.sinA=acSinB=abSinC\)

- Lấy abc chia cho cả 3 vế ta được ĐPCM

Nguyễn Lê Phước Thịnh
28 tháng 6 2021 lúc 21:46

Kẻ AH⊥BC

Xét ΔABH vuông tại H có \(AH=c\cdot\sin\widehat{B}\)

Xét ΔACH vuông tại H có \(AH=b\cdot\sin\widehat{C}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{AH}{\sin\widehat{B}}\\b=\dfrac{AH}{\sin\widehat{C}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AH}{c}\\\sin\widehat{C}=\dfrac{AH}{b}\end{matrix}\right.\Leftrightarrow\dfrac{c}{\sin\widehat{C}}=\dfrac{b}{\sin\widehat{B}}\)(1)

Kẻ BK⊥AC

Cm tương tự, ta được: \(\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)

Từ (1), (2) suy ra đpcm

 

Phụng Nguyễn Thị
Xem chi tiết
Anh Khương Vũ Phương
20 tháng 11 2017 lúc 15:56

Bạn tự vẽ hình nhé

a,Kẻ BK vuông góc với AC, đặt BK = h

tam giác ABK có K vuông => sin A = h/c => a/sin A = ac/h (1)

tam giác BKC có K vuông => sin C = h/a => c/sin C = ac/h (2)

Từ (1) và (2) => a/sin A = c/sin C

CMTT có b/sinB = c/sin C

=> dpcm

b, có SABC = (h.b)/2

mà h = a.sinC \(\Rightarrow S_{ABC}=\dfrac{a.sinC.b}{2}\) = \(\dfrac{1}{2}a.b.sinC\)

CMTT có \(S_{ABC}=\dfrac{1}{2}a.c.sinB=\dfrac{1}{2}b.c.sinA\)

=> đpcm