Cho tam giác nhọn ABC,BC=a, AC=b,AB=c.CMR:
a,\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b,Có thể xảy ra :Sin A=Sin B+Sin c
Cho tam giác nhọn ABC độ dài các cạnh BC, CA, AB lần lượt bằng a, b, c
a) Chứng minh: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) Chứng minh rằng nếu: a + b = 2c thì sinA + sinB = 2sinC
Cho ΔABC, AB = c, BC = a, AC = b và b + c = 2a. Chứng minh rằng:
a) 2sinA = sinB + sinC
b) \(\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
Cho tam giác ABC, biết AB = 21 ; AC = 28 ; BC = 35
a) Chứng minh rằng tam giác ABC vuông
b) Tính sinB, sinC, góc B, góc C và đường cao AH vủa tam giác ABC
Cho tam giác ABC nhọn CMR: sinA/2 sinB/2 sinC/2 <=1/8
a) Tính: cosA, sinA, biết tanA= \(\dfrac{3}{5}\)
b) Tính: sinA, tanA, biết cosA=\(\dfrac{1}{4}\)
MỌI NGƯỜI GIÚP EM VỚI Ạ. EM CẢM ƠN NHIỀU Ạ
Cho tam giác ABC có ba góc nhọn
Chứng minh rằng : cos A + cos B + cos C \(\le\dfrac{3}{2}\)
Cho tam giác ABC cân ở A, 3 đường cao AD, BE, CF. Đường thẳng qua B song song với CF cắt AC tại H. Chứng minh
a, AC2=AE.AH
b, \(\dfrac{1}{CF^2}=\dfrac{1}{BC^2}+\dfrac{4}{AD^2}\)cho tam giác ABC có
BC = a
AC = b
AB = c
biết \(\dfrac{ab}{b+c}+\dfrac{bc}{c+d}+\dfrac{ca}{a+b}=\dfrac{ca}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{a+b}\)
cmr tam giác ABC cân