Tham khảo:
Đặt P = sinA/2.sinB/2.sinC/2
2P = (2sinA/2.sinB/2).sinC/2 = [cos(A/2-B/2) - cos(A/2+B/2)].sin(C/2)
2P = [cos(A/2-B/2) - sin(C/2)].sin(C/2) = sin(C/2).cos(A/2-B/2) - sin²(C/2)
8P = 4sin(C/2).cos(A/2-B/2) - 4sin²(C/2)
1-8P = 4sin²(C/2) - 4sin(C/2).cos(A/2-B/2) + cos²(A/2-B/2) + 1 - cos²(A/2-B/2)
1-8P = [2sin(C/2) - cos(A/2-B/2)]² + sin²(A/2-B/2) ≥ 0 (*)
=> P ≤ 1/8