a, ( Định lý Sin)
b, Áp dụng T/C tỉ lệ thức
Xảy ra \(\Leftrightarrow a=b+c\)
a, ( Định lý Sin)
b, Áp dụng T/C tỉ lệ thức
Xảy ra \(\Leftrightarrow a=b+c\)
Cho tam giác ABC nhọn có ba cạnh a,b,c
CM: Diện tích tam giác ABC = \(\dfrac{1}{2}ab.\sin C\) = \(\dfrac{1}{2}bc.\sin A\) = \(\dfrac{1}{2}ac.\sin B\)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
Cho tam giác nhọn ABC độ dài các cạnh BC, CA, AB lần lượt bằng a, b, c
a) Chứng minh: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) Chứng minh rằng nếu: a + b = 2c thì sinA + sinB = 2sinC
Gọi a,b,c là độ dài các cạnh BC,AC,AB của tam giác nhọn ABC. Chứng minh: \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Cho tam giác ABC vuông tại A, biết BC=4cm và sin B = \(\dfrac{2}{5}\) . Tính AB, AC
Tam giác ABC vuông tại A có BC=20cm, AB=10cm
1. Giải tam giác ABC vuông và tính độ dài đường cao AH
2. Cminh: tgB, Sin B=\(\dfrac{HC}{AB}\)
3. Kẻ phân giác của góc BAC cắt BC tại I. Tính HI
Cho tam giác ABC nhọn có BC=a và H là trực tâm. Tia BH, CH theo thứ tự cắt AC,AB tại M,N
a)CM; ∠AMN=∠ABC
b)CM: \(BH\cdot BM+CH\cdot CN=a^2\)
c)Giả sử ∠MHN=120o. Tính AH và MN theo a
d)CM: \(\sin B\cdot\sin C-\cos C\cdot\cos B=\cos A\)
e)Giả sử∠A=2∠B.CM:\(AC^2+AB\cdot AC=a^2\)
Cho tam giác ABC nhọn có AB=c, BC=a, AC=b nội tiếp đường tròn tâm O, Mlaf trung điểm của BC. Cmr:
\(b.\sin C+c.\sin B\le2AM\)
Cho tam giác ABC vuông tại A,Sin c=\(\dfrac{3}{5}\);AC=4cm.Tính AB,BC.