bạn áp dụng hệ thức lượng trong tam giác vuông nha
Định lý sin đã có sẵn cần chứng minh chi nữa :))
bài này mk làm rồi ; giờ lm biến chép lại . nên bn xem trong này nha .
https://hoc24.vn/hoi-dap/question/639032.html
bạn áp dụng hệ thức lượng trong tam giác vuông nha
Định lý sin đã có sẵn cần chứng minh chi nữa :))
bài này mk làm rồi ; giờ lm biến chép lại . nên bn xem trong này nha .
https://hoc24.vn/hoi-dap/question/639032.html
Cho tam giác ABC nhọn có AB =c ,AC =b ,BC .
Chứng minh : a)
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}.\)
b)\(S_{ABC}=\dfrac{1}{2}absinC=\dfrac{1}{2}bcsinA=\dfrac{1}{2}acsinB\)
Bài toán 8. Cho tam giác ABC nhọn có BC =a,CA=b,AB= c trong đó b—c=a/k;(k>1). Gọi ha,hb,hc lần lượt là độ dài các đường cao hạ từ A,B,C. Chứng minh rằng: 1. 1/ha=k(1/Hb-1/hc) 2. a/sinA=b/sinB=c/sinC và sinA=k(sinB-sinC)
Bài 2: Cho ΔABC vuông tại A
a) Chứng minh: \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
b) Chứng minh: \(BC^2=AB^2+AC^2-2.AB.AC.cosA\)
1Cho tam giác nhọn ABC , các đường cao AD,BE,CF. Chứng minh rằng: AF.BD.CE=AB.BC.AC.cosA.cosB.cosC
2Cho tam giác nhọn ABC ( BC=a , AC=b , AB=c) . Chứng minh rằng:
a)SABC =\(\frac{1}{2}\)b.c.sinA
b) \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác ABC có BC=a, AC=b, AB=c. chứng minh: \(sin\dfrac{A}{2}< =\dfrac{a}{b+c}\)
Cho tam giác ABC nhọn, G là trọng tâm, M là điểm nằm trong tam giác \(\left(M\ne G\right)\) . Đường thẳng MG cắt các đường thẳng AB, BC, CA lần lượt tại C', A', B'. Chứng minh rằng : \(\dfrac{MA'}{GA'}+\dfrac{MB'}{GB'}+\dfrac{MC'}{GC'}=3\) .
cho tam giác ABC có góc B; góc C nhọn, đường cao AH
a) Chứng minh: AH=\(\dfrac{BC}{cotB+cotC}\)
b) Tính SABC, biết BC=4cm; góc B=450; góc C=300
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC
a, Cho AB=9, BH=5.4. Tính AC,BC,AH,EF ( đã làm được)
b, Chứng minh \(\dfrac{1}{EF^2}\)=\(\dfrac{1}{AB^2}\)+\(\dfrac{1}{AC^2}\)(đã làm được)
c, Chứng minh EA.EB+FA.FC=HB.HC( cần trợ giúp)