Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:09

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)

kietdeptrai
Xem chi tiết
Cee Hee
5 tháng 11 2023 lúc 15:17

loading...

`a)` Tỉ số lượng giác góc `B` của \(\Delta ABC\)

\(SinB=\dfrac{AC}{BC}\\ CosB=\dfrac{AB}{BC}\\ TanB=\dfrac{AC}{AB}\\ CotB=\dfrac{AB}{AC}\)

`b)` Tính `BC,AH`

Xét \(\Delta ABC\) vuông tại `A`, đường cao `AH`

Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\left(htl\right)\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{25}{576}\\ \Rightarrow AH^2=\dfrac{576\cdot1}{25}=23,04\\ \Rightarrow AH=\sqrt{23,04}=4,8cm\)

Ta có: \(AB\cdot AC=AH\cdot BC\left(htl\right)\)

\(\Rightarrow6\cdot8=4,8\cdot BC\\ \Rightarrow48=4,8\cdot BC\\ \Rightarrow BC=\dfrac{48}{4,8}\\ \Rightarrow BC=10cm\)

Vậy: `AH = 4,8cm; BC= 10cm`

`c)` C/m: `AE * AB = AF * AC`

Xét \(\Delta AHB\) vuông tại `H`, đường cao `HE`

Ta có: \(AH^2=AE\cdot AB\left(htl\right)\)     `(1)`

Xét \(\Delta AHC\) vuông tại `H`, đường cao `HF`

Ta có: \(AH^2=AF\cdot AC\left(htl\right)\)     `(2)`

Từ `(1)` và `(2)` \(\Rightarrow AH^2=AH^2\)

\(\Rightarrow AE\cdot AB=AF\cdot AC\left(=AH^2\right).\)

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:18

a: \(3\sqrt{20}-\sqrt{45}+\sqrt{75}\)

\(=3\cdot2\sqrt{5}-3\sqrt{5}+5\sqrt{3}\)

\(=6\sqrt{5}-3\sqrt{5}+5\sqrt{3}=3\sqrt{5}+5\sqrt{3}\)

b: \(\dfrac{\left(\sqrt{50}-2\sqrt{18}+\sqrt{98}\right)}{\sqrt{2}}\)

\(=\dfrac{5\sqrt{2}-2\cdot3\sqrt{2}+7\sqrt{2}}{\sqrt{2}}\)

=5-6+7

=12-6

=6

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:06

Xét ΔMNP vuông tại M có

\(sinN=\dfrac{MP}{NP}\)

\(cosN=\dfrac{MN}{NP}\)

\(tanN=\dfrac{MP}{MN}\)

\(cotN=\dfrac{NM}{MP}\)

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:19

Câu 1:

a: \(A=15\sqrt{4a}+\sqrt{a}-\sqrt{25a}\)

\(=15\cdot2\sqrt{a}+\sqrt{a}-5\sqrt{a}\)

\(=30\sqrt{a}-4\sqrt{a}=26\sqrt{a}\)

b: Sửa đề: Khi a=100

Thay a=100 vào A, ta được:

\(A=26\cdot\sqrt{100}=26\cdot10=260\)

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:18

a: \(\dfrac{\sqrt{5}}{\sqrt{7}}=\dfrac{\sqrt{5\cdot7}}{7}=\dfrac{\sqrt{35}}{7}\)

b: \(\dfrac{2}{\sqrt{a}-1}=\dfrac{2\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{2\sqrt{a}+2}{a-1}\)

Ẩn danh
Xem chi tiết
HT.Phong (9A5)
24 tháng 8 2024 lúc 19:11

\(B=sin^2x\cdot tan^2x+2sin^2x-tan^2x+cos^2x\\ =\left(sin^2x\cdot tan^2x-tan^2x\right)+2sin^2x+cos^2x\\ =-tan^2\left(1-sin^2x\right)+2sin^2x+cos^2x\\ =-tan^2\cdot cos^2x+sin^2x+sin^2x+cos^2x\\ =-tan^2x\cdot cos^2x+sin^2x+1\\ =-\dfrac{sin^2x}{cos^2x}\cdot cos^2x+sin^2x+1\\ =-sin^2x+sin^2x+1\\ =1\)

Vậy giá trị của bt không phụ thuộc vào biến 

vũ hoàng quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2024 lúc 17:17

Gọi độ dài cái thang là BC, khoảng cách từ chân thang đến chân tường là AB

Theo đề, ta có: BC=5m; AB\(\perp\)AC tại A; \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)

=>\(\dfrac{BA}{5}=cos60=\dfrac{1}{2}\)

=>\(BA=\dfrac{5}{2}=2,5\left(m\right)\)

Vậy: Khoảng cách từ chân thang đến chân tường là 2,5m

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:26

a: ĐKXĐ: x-10>=0

=>x>=10

b: \(\sqrt{9a^2b}=\sqrt{\left(3a\right)^2\cdot b}=3a\cdot\sqrt{b}\)

c: \(\left(2\sqrt{3}+1\right)^2=13+4\sqrt{3}\)

\(\left(2\sqrt{2}+\sqrt{5}\right)^2=8+5+2\cdot2\sqrt{2}\cdot\sqrt{5}=13+4\sqrt{10}\)

mà \(4\sqrt{3}< 4\sqrt{10}\left(3< 10\right)\)

nên \(\left(2\sqrt{3}+1\right)^2< \left(2\sqrt{2}+\sqrt{5}\right)^2\)

=>\(2\sqrt{3}+1< 2\sqrt{2}+\sqrt{5}\)

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:17

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}+30^0=90^0\)

=>\(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{AB}{12}=sin30=\dfrac{1}{2}\)

=>AB=6(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=144-36=108\)

=>\(AC=6\sqrt{3}\left(cm\right)\)

Kiều Vũ Linh
15 tháng 11 2023 lúc 22:18

ABC vuông tại A

⇒ ∠B + ∠C = 90⁰

⇒ ∠B = 90⁰ - ∠C

= 90⁰ - 30⁰

= 60⁰

sinB = AC/BC

⇒ AC = BC . sinB

= 12 . sin60⁰

= 6√3 (cm)

sinC = AB/BC

⇒ AB = BC.sinC

= 12.sin30⁰

= 6 (cm)