Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn minh châu
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
huyền thoại đêm trăng
11 tháng 10 2018 lúc 20:08

Gọi b1, b2 là nồng độ 2 dd NaOH, a là nồng độ dd H2SO4
Khi trộn 1l B1 vs 1l B2 được 2l dd chứa (b1+b2) mol NaOH
H2SO4 + 2NaOH--> Na2SO4+2H2O
Vì 2 l H2SO4 có 2a mol => b1+b2=4a
Trộn 2l B1 vs 1l B2 thì được 3l dd chứa (2b1+b2) mol NaOH
trung hòa 30ml Y cần 32,5mlA (có 3,25a mol)=> 2b1+b2=6,5a
ta có hệ
b1+b2=4a
2b1+b2=6,5a
ta đuợc
b1=2,5a và b2=1,5a
khi trung hòa 70ml dung dịch Z tạo ra thì cần 67,5ml A
=>khi trung hòa 7l dung dịch Z tạo ra thì cần 67,5l A (chứa 6,75a mol H2SO4)
Theo pt, H2SO4: NaOH =1:2
=>nNaOH trong 7l Z=13,5a
Gọi V 2 dd NaOH cần trộn là x,y(l)
=> 2,5ax + 1,5ay=13,5a, mà x+y=7=> x/y=3/4

tick đê Trương Bảo Châu
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 16:47

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

Nguyễn Ngọc Anh
Xem chi tiết
Dang Tung
12 tháng 6 2023 lúc 20:35

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

LÊ ĐÌNH HẢI
22 tháng 7 2023 lúc 19:27

a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).

Bất đẳng thức trên tương đương : 

\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0

\(\Leftrightarrow\)\(\dfrac{b}{a^2+b}\)\(\dfrac{a}{b^2+a}\)\(\le\)-1

\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)\(\dfrac{b}{a^2+b}\)\(\ge\)1

Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)\(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)

\(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)

\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1

Vậy BĐT được chứng minh

Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1

TRƯƠNG THÀNH AN
Xem chi tiết

image.png

Cường Hoàng
Xem chi tiết
Neet
21 tháng 6 2017 lúc 15:53

Áp dụng BĐT bunyakovsky:

\(7-a=b+c+d\le\sqrt{3\left(b^2+c^2+d^2\right)}=\sqrt{3\left(13-a^2\right)}\)

\(\Leftrightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)

\(\Leftrightarrow49-14a+a^2\le39-3a^2\)

\(\Leftrightarrow4a^2-14a+10\le0\Leftrightarrow2\left(a-1\right)\left(2a-5\right)\le0\)

\(\Leftrightarrow1\le a\le\dfrac{5}{2}\)

Vậy \(A_{max}=\dfrac{5}{2}\)khi \(b=c=d=\dfrac{3}{2}\)

Như Khương Nguyễn
21 tháng 6 2017 lúc 8:28

2

Nhật Tân
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 8 2021 lúc 19:44

Đề bài sai

Phản ví dụ:

\(a=-1;b=1\) thì \(\left(a^2+b^2\right)\left(a^4+b^4\right)=4\)

Trong khi \(\left(a+b\right)\left(a^5+b^5\right)=0\)

\(4< 0\) là sai

BĐT này chỉ đúng với a;b là các số thực không âm (hoặc dương), hoặc cùng dấu

31.7a7 Lê Tấn Quyền
Xem chi tiết
phung tuan anh phung tua...
24 tháng 12 2021 lúc 15:38

B

TRƯƠNG THÀNH AN
Xem chi tiết

image.png