Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Quân
Xem chi tiết
๖ۣۜHả๖ۣۜI
2 tháng 11 2023 lúc 17:37

A

Trâm Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2022 lúc 21:37

Vì B là tập các số nguyên có tận cùng là 0;2;4;6;8

nên B là tập các số chẵn

=>A=B

Vì 2k-2=2(k-1) chia hết cho 2

nên C là tập các số chẵn

=>A=C

Phan Thị Ánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2022 lúc 10:44

a: Để A=2 thì 27a-37=8-10a

=>37a=45

hay a=45/37

b: Để A là số nguyên thì \(27a-37⋮5a-4\)

\(\Leftrightarrow135a-185⋮5a-4\)

\(\Leftrightarrow135a-81-107⋮5a-4\)

\(\Leftrightarrow5a-4\in\left\{1;-1;107;-107\right\}\)

hay \(a\in\left\{1;\dfrac{3}{5};\dfrac{111}{5};-\dfrac{103}{5}\right\}\)

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 16:34

\(a+b=c^3-2024c\\ \Leftrightarrow a+b+c=c^3-2023c=c\left(c^2-2023\right)\)

Với \(c=3k\Leftrightarrow a+b+c⋮3\)

Với \(c=3k+1\Leftrightarrow a+b+c=\left(3k+1\right)\left(9k^2+6k+1-2023\right)\)

\(=\left(3k+1\right)\left(9k^2+6k-2022\right)=3\left(3k+1\right)\left(3k^2+2k-674\right)⋮3\)

Với \(c=3k+2\Leftrightarrow a+b+c=\left(3k+2\right)\left(9k^2+12k+4-2023\right)\)

\(=\left(3k+2\right)\left(9k^2+12k-2019\right)=3\left(3k+2\right)\left(3k^2+4k-673\right)⋮3\)

Do đó \(a+b+c⋮3\)

Ta có \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\\ =\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)

Ta thấy các số hạng trong tổng trên đều chia hết cho 6 do là 3 số nguyên lt nên \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

Mà \(a+b+c⋮6\) nên ta được đpcm

dream XD
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2022 lúc 14:29

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

Nguyễn Tân Vương
2 tháng 1 2022 lúc 14:30

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

Hồ Lê Phú Lộc
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 10 2023 lúc 23:10

a) \(A = \left\{ {a \in \mathbb{Z}| - 4 < a <  - 1} \right\}\)

A là tập hợp các số nguyên a thỏa mãn \( - 4 < a <  - 1\).

\( - 4 < a <  - 1\) có nghĩa là: a là số nguyên nằm giữa \( - 4\) và \( - 1\). Có các số \( - 3; - 2\).

Vậy \(A = \left\{ { - 3; - 2} \right\}\)

b) \(B = \left\{ {b \in \mathbb{Z}| - 2 < b < 3} \right\}\)

B là tập hợp các số nguyên b thỏa mãn \( - 2 < b < 3\).

\( - 2 < b < 3\) có nghĩa là: b là số nguyên nằm giữa \( - 2\) và \(3\). Có các số \( - 1;0;1;2\).

Vậy \(B = \left\{ { - 1;0;1;2} \right\}\)

c) \(C = \left\{ {c \in \mathbb{Z}| - 3 < c < 0} \right\}\)

C  là tập hợp các số nguyên c thỏa mãn \( - 3 < c < 0\).

\( - 3 < c < 0\) có nghĩa là: c là số nguyên nằm giữa \( - 3\) và 0. Có các số \( - 2; - 1\).

Vậy \(C = \left\{ { - 2; - 1} \right\}\)

d) \(D = \left\{ {d \in \mathbb{Z}| - 1 < d < 6} \right\}\)

D là tập hợp các số nguyên d thỏa mãn \( - 1 < d < 6\).

\( - 1 < d < 6\) có nghĩa là: b là số nguyên nằm giữa \( - 1\) và 6. Có các số \(0;1;2;3;4;5\).

Vậy \(D = \left\{ {0;1;2;3;4;5} \right\}\)

TFBoys
Xem chi tiết
Húc Phượng - Cẩm Mịch
Xem chi tiết
Akai Haruma
31 tháng 12 2019 lúc 17:47

Lời giải:

\(\frac{a^2+1}{ab-1}\in\mathbb{Z}\)

\(\Rightarrow a^2+1\vdots ab-1\)

$\Rightarrow b(a^2+1)\vdots ab-1$

$\Leftrightarrow a(ab-1)+a+b\vdots ab-1$

$\Leftrightarrow a+b\vdots ab-1$

$\Rightarrow (a+b)^2\vdots ab-1$

$\Leftrightarrow (a^2+1)+(b^2+1)+2(ab-1)\vdots ab-1$

$\Rightarrow b^2+1\vdots ab-1$ (do $a^2+1\vdots ab-1; 2(ab-1)\vdots ab-1$)

Do đó $\frac{b^2+1}{ab-1}\in\mathbb{Z}$

Ta có đpcm.

Khách vãng lai đã xóa