Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2019 lúc 23:03

Do \(x^2+y^2\ge0\) \(\forall x;y\Rightarrow x+y\ge0\)

Lại có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow x+y\ge\frac{\left(x+y\right)^2}{2}\)

\(\Rightarrow2\left(x+y\right)-\left(x+y\right)^2\ge0\Rightarrow\left(x+y\right)\left(2-\left(x+y\right)\right)\ge0\)

- Nếu \(x+y=0\Rightarrow x+y< 2\) BĐT đúng

- Nếu \(x+y>0\Rightarrow2-\left(x+y\right)\ge0\Rightarrow x+y\le2\)

Vậy \(x+y\le2\)

Thành Vinh Lê
Xem chi tiết
SigMa
Xem chi tiết
missing you =
2 tháng 8 2021 lúc 18:54

thử x=1,y=2,z=3\(=>x^2+y^2+z^2=14>\dfrac{1}{2}\)(vô lí) sai đề

missing you =
2 tháng 8 2021 lúc 19:18

dấu"=" xảy ra tại x=y=z=1/3 nên thay vào biểu thức khi không đúng nê làm thế này:

\(P=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\) dấu"=" xảy ra<=>x=y=z=1/3

Nguyễn Việt Lâm
2 tháng 8 2021 lúc 19:49

Thêm điều kiện \(x+y+z=1\) thì BĐT đúng phải là: \(x^2+y^2+z^2\le1\)

Đẳng thức xảy ra tại \(\left(0;0;1\right)\) và các hoán vị

Phan PT
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2021 lúc 16:31

Đề bài sai, sửa đề: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)

Đặt \(P=\sqrt{x^2+y^2}+\sqrt{xy}>0\)

\(\Rightarrow P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}\ge x^2+y^2+xy+2\sqrt{2xy.xy}\)

\(\Rightarrow P^2\ge x^2+y^2+\left(2\sqrt{2}+1\right)xy\ge x^2+y^2+2xy=4\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)

Lại có: \(P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}=x^2+y^2+xy+\sqrt{4xy.\left(x^2+y^2\right)}\)

\(\Rightarrow P^2\le x^2+y^2+xy+\dfrac{1}{2}\left(4xy+x^2+y^2\right)=\dfrac{3}{2}\left(x+y\right)^2=6\)

\(\Rightarrow P\le\sqrt{6}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{3}}{3};\dfrac{3+\sqrt{3}}{3}\right)\)

Trần Văn Tú
Xem chi tiết
Nguyễn Minh Tuấn
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 10 2021 lúc 14:21

Áp dụng BĐT cosi: \(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow2\ge2\sqrt{xy}\\ \Leftrightarrow\sqrt{xy}\le1\\ \Leftrightarrow xy\le1\)

Dấu \("="\Leftrightarrow x=y=1\)

đấng ys
Xem chi tiết
Trên con đường thành côn...
24 tháng 8 2021 lúc 11:03

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

Trần Anh Thơ
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2020 lúc 13:52

\(VT\le\frac{x^2+16-y}{2}+\frac{y+16-x^2}{2}=\frac{32}{2}=16\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x\ge0\\y=16-x^2\end{matrix}\right.\)

nguyenthanhthuy
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Thắng Nguyễn
15 tháng 1 2018 lúc 19:00

C.hóa \(x+y=1\) và dùng C-S:

\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)

\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)

Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)

\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)

"=" khi \(x=y=\frac{1}{2}\)