1, cho a,b,c là các số dương chứng minh rằng\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(2a+c\right)}\)
2, cho x,y,z thuộc R và x+y+z=5 và xy +yz+xz=8 chứng minh răng \(1\le x\le\frac{7}{3}\)
1, cho a,b,c là các số thực dương chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(a+2c\right)}\)
2,cho x,y,z thỏa mãn x+y+z=5 và xy+yz+xz=8 chứng minh rằng \(1\le x\le\frac{7}{3}\)
3, cho a,b,c>0 chứng minh rằng\(\frac{a^2}{2a^2+\left(b+c-a\right)^2}+\frac{b^2}{2b^2+\left(b+c-a\right)^2}+\frac{c^2}{2c^2+\left(b+a-c\right)^2}\le1\)
4,cho a,b,c là các số thực bất kỳ chứng minh rằng \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\left(ab+bc+ac-1\right)^2\)
5, cho a,b,c > 1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)chứng minh rằng \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)
1.cho các số thực x,y,z thay đổi thỏa mãn 0\(\le x,y,z\le2\) và x+y+z=4 chứng minh rằng \(x^2+y^2+z^2\le8\)
2.\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\) với a,b,c,a',b',c' >0
chứng minh \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Tìm x biết
a) \(\sqrt{x^2-3}\le x^2-3\)
b) \(\sqrt{x-1}< x+3\)
c) \(\sqrt{x^2-6x+9}>x-6\)
Rút gọn: \(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\) ; 0 \(\le x\le y\)
Bài 1) Tìm GTLN của các biểu thức sau ( sử dụng bất đẳng thức Côsi)
a) P= \(\sqrt{\left(x+2\right)\left(3-x\right)}\); với \(-2\le x\le3\)
b) P= \(\sqrt{\left(x+2\right)\left(5x-2\right)}\); với \(-2\le x\le\dfrac{5}{2}\)
c) P= \(\sqrt{\left(2x+1\right)\left(5-3x\right)}\); với \(-\dfrac{1}{2}\le x\le\dfrac{5}{3}\)
( CÁC BẠN GIÚP MÌNH VỚI, ĐANG CẦN GẤP )
Cho 3 số x,y,z thỏa mãn -1\(\le\)x,y,z\(\le\)3 và x+y+z=1. Chứng minh rằng x2+y2+z2\(\le\)11
P=\(\left(\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\):\(\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a,Rút gọn P
b.Tìm x để \(\frac{1}{P}\) ≤\(-\frac{5}{2}\)
CHo x, y tm \(2x^2+3y^2=4\)
x+2y\(\le \sqrt{\frac{22}{3} } \)
Câu 1 :A= \(\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{x+2}\right)\)
a, rút gọn A
b, Tìm X sao cho A<2
Câu 2 \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, rút gọn A \(\left(với\right)x\ge0,x\ne1\)
b, chúng minh rằng A\(\le\)\(\frac{2}{3}\)
Câu 3 \(\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\left(vớix>0\right)\)
a, Rút gọn P
b, tìm giá trị của x để P=3