cho a,b,c là 3 số thực dương thỏa mãn a+b+c+ab+bc+ac=6. tính gtln của P=abc
a,b,b là các số thực dương thỏa mãn a+b+c=3
Tìm GTLN của biểu thức P = 2(ab+bc+ac) - abc
\(a=b=c=1\rightarrow P=5\)ta se cm P=5 la gtln cua P that vay ta se cm
\(5p^3+27r\ge18pq\Leftrightarrow5p^3+27r-18pq\ge0\).theo bdt schur
\(LHS\ge5p^3+3p\left(4q-p^2\right)-18pq=2p\left(p^2-3q\right)\ge0\)
Vay \(P_{max}=5\leftrightarrow a=b=c=1\)
Đặt P = F(a;b;c).
Xét hiệu \(F\left(a;b;c\right)-F\left(t;t;c\right)=2\left(ab+bc+ca-t^2-2tc\right)+c\left(t^2-ab\right)\)
\(=2\left(ab-t^2\right)-c\left(ab-t^2\right)+2c\left(a+b-2t\right)\)
\(=2\left(ab-t^2\right)-c\left(ab-t^2\right)\)
\(=\left(ab-t^2\right)\left(2-c\right)\le0\) với \(t=\frac{a+b}{2}\). Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)\)
Ta sẽ chứng minh \(f\left(t;t;c\right)\le5\) hay \(2\left(t^2+2tc\right)-t^2c\le5\)
\(\Leftrightarrow\left(2-c\right)t^2+4tc-5\le0\). Thật vậy từ giả thiết suy ra \(c=3-2t\).Mặt khác do c > 0 và t > 0 nên \(0< t< \frac{3}{2}\)
Do đó ta cần chứng minh \(\left(2t-1\right)t^2+4t\left(3-2t\right)-5\le0\) với \(0< t< \frac{3}{2}\)
\(\Leftrightarrow\left(t-1\right)^2\left(2t-5\right)\le0\). BĐT này đúng với mọi \(0< t< \frac{3}{2}\)
P/s: Is it true?? Em mới học dồn biến nên ko chắc đâu..
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)
\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$
Cho các số a,b,c là số thực dương thỏa mãn a+b+c=1. Tìm GTLN của:
\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ac}{b+ac}}\)
Có bất đẳng thức xy+zt≥x+zy+txy+zt≥x+zy+t với x,z≥0x,z≥0 ,y,t>0y,t>0
Giả sử cc lớn nhất trong các số a,b,ca,b,c thì c≥13c≥13
Do a,b,c≥0a,b,c≥0 nên
Ta có P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1
Mà a+ba+b+2+cc+1−12=1−c3−c+c−12(c+1)=(1−c)(3c−1)(3−c)(2c+2)≥0
Anh/chị làm tương tự như vầy ạ: Câu hỏi của Baek Hyun - Toán lớp 9 (chỉ là thay a + b + c = 2017 bởi a + b + c = 1 thôi!)
VD: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}\) .Thay a + b + c = 1 vào và làm tương tự như bài trên (em đưa link rồi)
Giờ em lười gõ quá!
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+c\left(a+b+c\right)}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự:
\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\) ; \(\dfrac{ca}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=1\)
\(P_{max}=1\) khi \(a=b=c=\dfrac{2}{3}\)
CHO a,b,c là các số thực dương thỏa mãn abc=1 . tìm GTLN của P =ab/a^4 +b^4+ab +bc/b^4+c^4+bc + ca/c^4+a^4+ca +2020
\(a^4+b^4+a^4+a^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)
\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)
\(\Rightarrow4\left(a^4+b^4\right)\ge4\left(a^3b+ab^3\right)\Rightarrow a^4+b^4\ge a^3b+ab^3\)
\(F=\Sigma\frac{ab}{a^4+b^4+ab}\le\Sigma\frac{ab}{a^3b+ab^3+ab}=\Sigma\frac{1}{a^2+b^2+1}=\Sigma\frac{2}{2a^2+2b^2+2}\)
\(\le\Sigma\frac{1}{ab+a+b}\)
Đến đây bí :(
Cho a,b,c là các số thực dương thỏa mãn : a+b+c+ab+ac+bc=6
Tìm GTLN của P =abc
\(6=a+b+c+ab+bc+ca\ge6\sqrt[6]{a^3b^3c^3}\)
\(\Rightarrow a^3b^3c^3\le1\Rightarrow abc\le1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho 3 số dương a, b, c thỏa mãn a + b + c = 6. Tính GTLN của biểu thức
\(P=\dfrac{ab}{6-c}+\dfrac{bc}{6-a}+\dfrac{ca}{6-b}\)
\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)
\(P_{max}=3\) khi \(a=b=c\)
Cho 3 số dương a,b, c thỏa mãn a+b+c=6.Tìm GTLN của biểu thức:
P=\(\frac{ab}{6-c}+\frac{bc}{6-a}+\frac{ac}{6-b}\)
+ chứng bất đẳng thức phụ: \(\frac{1}{x+y}\le\frac{1}{4x}+\frac{1}{4y}\left(x,y>0\right)\)
Với \(x,y>0:\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\frac{x+y}{4xy}\ge\frac{1}{x+y}\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4x}+\frac{1}{4y}\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
+ Thay \(a+b+c=6\)vào P , ta được: \(P=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{c+a}\)
Áp dụng bđt chứng minh trên , ta được:\(\frac{1}{a+b}\le\frac{1}{4a}+\frac{1}{4b}\Rightarrow\frac{ab}{a+b}\le ab\left(\frac{1}{4a}+\frac{1}{4b}\right)=\frac{a}{4}+\frac{b}{4}\)
Tương tự như vậy rồi cộng từng vế các bđt , ta được
\(P\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}=\frac{6}{2}=3\)
Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\)
Vậy maxP =3\(\Leftrightarrow a=b=c=2\)
cho a , b, c là 3 số thực dương thỏa mãn a + b +c + ab + ac + bc = 6
CMR : \(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}>3\)
Đề bài bị nhầm phải ko bạn.
Ta đặt P=\(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\) .Ta cần chứng minh P\(\ge3\)\(\dfrac{b^3}{a}+ab\ge2b^2;\dfrac{a^3}{c}+ac\ge2a^2;\dfrac{c^3}{b}+bc\ge2c^2\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge2a^2+2b^2+2c^2-ab-ca-bc\ge ab+bc+ca\Rightarrow2\cdot P\ge2ab+2bc+2ca\left(1\right)\) \(\dfrac{b^3}{a}+a+1\ge3b;\dfrac{a^3}{c}+c+1\ge3a;\dfrac{c^3}{b}+b+1\ge3c\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge3a+3b+3c-3-a-b-c=2a+2b+2c-3\left(2\right)\) Cộng từng vế của 2 bđt (1) và (2) ta được:
\(\Rightarrow3\cdot\left(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=12-3=9\Rightarrow3P\ge9\Rightarrow P\ge3\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)