Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Hoài Thu
Xem chi tiết
Akai Haruma
29 tháng 5 2023 lúc 18:26

Chứng minh gì bạn?

Trần Đạt
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết
Vinne
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 9 2021 lúc 16:03

\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)

\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)

Thay vào P, ta được

\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)

 

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 16:00

\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=6+3x\)

\(\Rightarrow x^3-3x=6\)

Tương tự:

\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)

\(\Rightarrow y^3=34+3y\)

\(\Rightarrow y^3-3y=34\)

Do đó:

\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)

Trúc Giang
Xem chi tiết
Lê Thị Thục Hiền
18 tháng 6 2021 lúc 15:37

Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)

\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)

Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)

\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)

Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)

Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)

Vậy \(M=-20\sqrt{2}\)

missing you =
18 tháng 6 2021 lúc 15:42

theo bài ra

\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)

\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)

\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)

\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)

\(x^3=4\sqrt{2}-3.1x\)

\(x^3=4\sqrt{2}-3x\)

\(< =>x^3+3x-4\sqrt{2}=0\)

rồi làm y tương tự rồi thế vào M là ra

 

Võ Thùy Trang
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 10 2021 lúc 21:54

\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.x=6+3x\)

\(\Rightarrow x^3-3x=6\)

\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)

\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)

\(=34+3\sqrt[3]{289-288}.y=34+3y\)

\(\Rightarrow y^3-3y=34\)

\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)

\(=6+34+2009=2049\)

Lê Hà Vy
Xem chi tiết
Hung nguyen
17 tháng 8 2017 lúc 8:45

b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)

\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)

Bình phương 2 vế rút gọn

\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)

Đặt \(\sqrt{x^4-x^2}=a\)

\(\Rightarrow a^2-4\sqrt{3}a+12=0\)

\(\Leftrightarrow a=2\sqrt{3}\)

\(\Leftrightarrow x^4-x^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Hung nguyen
17 tháng 8 2017 lúc 9:04

Câu a xem lại đề đúng không b. Do nghiệm xấu lắm

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:46

a/ ĐKXĐ: ...

\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)

\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))

\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)

\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)

\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:50

c/ ĐKXĐ: \(x\le12\)

\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)

\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)

\(\Leftrightarrow a^3+a^2-12a=0\)

\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:58

d/ ĐKXĐ: \(x\le\frac{3}{2}\) ; \(x\ne\frac{3}{8};x\ne-\frac{13}{24}\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2\sqrt{3-2x}-3}-\frac{1}{3-2\sqrt[3]{5+3x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{1}{2\sqrt{3-2x}-3}=\frac{1}{3-2\sqrt[3]{5+3x}}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{3-2x}-3=3-2\sqrt[3]{5+3x}\)

\(\Leftrightarrow\sqrt[3]{5+3x}+\sqrt{3-2x}=3\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{5+3x}=a\\\sqrt{3-2x}=b\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}a+b=3\\2a^3+3b^2=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=3-a\\2a^3+3b^2=19\end{matrix}\right.\)

\(\Leftrightarrow2a^3+3\left(3-a\right)^2=19\)

\(\Leftrightarrow2a^3+3a^2-18a+8=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-4\\a=\frac{1}{2}\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{5+3x}=-4\\\sqrt[3]{5+3x}=\frac{1}{2}\\\sqrt[3]{5+3x}=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}5+3x=-64\\5+3x=\frac{1}{8}\\5+3x=8\end{matrix}\right.\)

Khách vãng lai đã xóa
nguyenhoangtung
Xem chi tiết
meme
30 tháng 8 2023 lúc 13:50

i)

Bước 1: Gom các thành phần chứa căn bậc hai ở cùng một vế của phương trình. 2√x + 2√x + 1 − √x + 1 = 4 2√x + 2√x + 1 − √x + 1 - 4 = 0 4√x + 2 − √x − 3 = 0

Bước 2: Đặt √x = t để tạo thành một phương trình bậc nhất. 4t + 2 - t - 3 = 0 3t - 1 = 0 3t = 1 t = 1/3

Bước 3: Giải phương trình tìm x bằng cách thay giá trị của t vào. √x = 1/3 x = (1/3)^2 x = 1/9

Vậy, nghiệm của phương trình là x = 1/9.

ii)

Bước 1: Gom các thành phần chứa căn bậc hai ở cùng một vế của phương trình. √x + 4 + √x − 4 = 2x − 12 + 2√x^2 − 16 √x + √x + 4 − 4 − 2x + 12 − 2√x^2 + 16 = 0 2√x − 2x + √x + 20 − 2√x^2 = 0

Bước 2: Đặt √x = t để tạo thành một phương trình bậc nhất. 2t^2 − 2t + t + 20 − 2t^2 = 0 −t + 20 = 0 t = 20

Bước 3: Giải phương trình tìm x bằng cách thay giá trị của t vào. √x = 20 x = 20^2 x = 400

Vậy, nghiệm của phương trình là x = 400.

Nguyen Kim Chi
Xem chi tiết