Giải: \(4sin^2\dfrac{x}{2}-\sqrt{3}.cos2x=1+2cos^2\left(x+\dfrac{3\pi}{4}\right)\)
Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
\(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\).Giải phương trình
Tìm m để phương trình sau có nghiệm:
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt{3}.sin2x-cos2x\)
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt[]{3}sin2x-cos2x\)
\(\Leftrightarrow4.\left(-\dfrac{1}{2}\right)\left[sin\left(x+\dfrac{\pi}{3}+x-\dfrac{\pi}{6}\right)+sin\left(x+\dfrac{\pi}{3}-x+\dfrac{\pi}{6}\right)\right]=m^2+2.\left[\dfrac{\sqrt[]{3}}{2}.sin2x-\dfrac{1}{2}.cos2x\right]\)
\(\Leftrightarrow2\left[sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(2x-\dfrac{\pi}{6}\right)\right]=m^2+2\)
\(\Leftrightarrow2.2sin2x.cos\dfrac{\pi}{6}=m^2+2\)
\(\Leftrightarrow2.2sin2x.\dfrac{\sqrt[]{3}}{2}=m^2+2\)
\(\Leftrightarrow2\sqrt[]{3}sin2x.=m^2+2\)
\(\Leftrightarrow sin2x.=\dfrac{m^2+2}{2\sqrt[]{3}}\)
Phương trình có nghiệm khi và chỉ khi
\(\left|\dfrac{m^2+2}{2\sqrt[]{3}}\right|\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m^2+2}{2\sqrt[]{3}}\ge-1\\\dfrac{m^2+2}{2\sqrt[]{3}}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge-2\left(1+\sqrt[]{3}\right)\left(luôn.đúng\right)\\m^2\le2\left(1-\sqrt[]{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow-\sqrt[]{2\left(1-\sqrt[]{3}\right)}\le m\le\sqrt[]{2\left(1-\sqrt[]{3}\right)}\)
a) \(sinx=-\dfrac{6}{5}\)
b) \(sin3x=\dfrac{\sqrt{3}}{2}\)
c) \(sin\left(x+\dfrac{\pi}{3}\right)=sin\dfrac{3\pi}{4}\)
d) \(4sin\left(x+\dfrac{5\pi}{6}\right)=5\)
a: sin x=-6/5=-1,2
mà -1<=sin x<=1
nên \(x\in\varnothing\)
b: sin3x=căn 3/2
=>3x=pi/3+k2pi hoặc 3x=2/3pi+k2pi
=>x=pi/9+k2pi/3 hoặc x=2/9pi+k2pi/3
c: \(sin\left(x+\dfrac{pi}{3}\right)=sin\left(\dfrac{3}{4}pi\right)\)
=>x+pi/3=3/4pi+k2pi hoặc x+pi/3=1/4pi+k2pi
=>x=5/12pi+k2pi hoặc x=-1/12pi+k2pi
d: =>sin(x+5/6pi)=5/4
mà sin(x+5/6pi) thuộc [-1;1]
nên \(x\in\varnothing\)
a)\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
b)\(\dfrac{2sin2x-cos2x-7sinx+4+\sqrt{3}}{2cosx+\sqrt{3}}=1\)
c)\(\dfrac{\left(1+sinx+cos2x\right)sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
d)\(\left(\sqrt{3}sin2x+1\right)\left(2sinx-1\right)+sin3x-cos2x-sinx=0\)
a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)
\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)
\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)
\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)
\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)
\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
Đối chiếu điều kiện ta được:
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
Giải các phương trình lượng giác sau:
1) \(2cos^2\left(x+\dfrac{2\pi}{3}\right)-1=0\)
2) \(4cos^2\left(x+\dfrac{\pi}{6}\right)-3=0\)
3) \(8cos^3\left(2x-\dfrac{\pi}{6}\right)-3\sqrt{3}=0\)
1.
\(\Leftrightarrow cos\left(2x+\dfrac{4\pi}{3}\right)=0\)
\(\Leftrightarrow2x+\dfrac{4\pi}{3}=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow2x=-\dfrac{5\pi}{6}+k\pi\)
\(\Leftrightarrow x=-\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)
b.
\(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)
\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)
Giải PT
a1) \(3.\cos4x-2^{ }\cos^23x=1\)
a2) \(2\cos2x-8\cos x+7=\dfrac{1}{\cos x}\)
a3) \(\dfrac{\left(1+\sin x+\cos2x\right)\sin\left(x+\dfrac{\pi}{4}\right)}{1+\tan x}=\dfrac{1}{\sqrt{2}}\cos x\)
a4) \(9\sin x+6\cos x-3\sin2x+\cos2x=8\)
a) Pt \(\Leftrightarrow3.cos4x-\left(cos6x+1\right)=1\)
\(\Leftrightarrow3cos4x-cos6x-2=0\)
Đặt \(t=2x\)
Pttt:\(3cos2t-cos3t-2=0\)
\(\Leftrightarrow3\left(2cos^2t-1\right)-\left(4cos^3t-3cost\right)-2=0\)
\(\Leftrightarrow-4cos^3t+6cos^2t+3cost-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=1\\cost=\dfrac{1+\sqrt{21}}{4}\left(vn\right)\\cost=\dfrac{1-\sqrt{21}}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=k2\pi\\t=\pm arc.cos\left(\dfrac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\dfrac{1}{2}.arccos\left(\dfrac{1-\sqrt{21}}{4}\right)+k\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a2) \(2cos2x-8cosx+7=\dfrac{1}{cosx}\) (ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\))
\(\Leftrightarrow2.\left(2cos^2x-1\right)-8cosx+7=\dfrac{1}{cosx}\)
\(\Leftrightarrow2.\left(2cos^2x-1\right)cosx-8cos^2x+7cosx=1\)
\(\Leftrightarrow4cos^3x-8cos^2x+5cosx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) (tm) (\(k\in Z\))
Vậy...
a3) Đk: \(x\ne-\dfrac{\pi}{4}+k\pi;x\ne\dfrac{\pi}{2}+k\pi\)
Pt \(\Leftrightarrow\dfrac{\left(1+sinx+1-2sin^2x\right).\dfrac{1}{\sqrt{2}}\left(sinx+cosx\right)}{1+\dfrac{sinx}{cosx}}=\dfrac{1}{\sqrt{2}}cosx\)
\(\Leftrightarrow\dfrac{\left(-2sin^2x+sinx+2\right).\left(sinx+cosx\right)cosx}{cosx+sinx}=cosx\)
\(\Leftrightarrow\left(2+sinx-2sin^2x\right).cosx=cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\2+sinx-2sin^2x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a4) Pt \(\Leftrightarrow9sinx+6cosx-6sinx.cosx+1-2sin^2x=8\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sin^2x-9sinx+7\right)=0\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sinx-7\right)\left(sinx-1\right)=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(6cosx+2sinx+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\6cosx+2sinx=7\left(vn\right)\end{matrix}\right.\) (\(6cosx+2sinx=7\) vô nghiệm do \(6^2+2^2< 7^2\))
\(\Rightarrow sinx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi;k\in Z\)
Vậy...
giai pt:
a) \(4sin^5x.cosx-4cos^5x.sinx=sin^24x\)
b) \(4sin^2\frac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\frac{3\pi}{4}\right)\)
c) \(sin^2\left(x+\frac{\pi}{3}\right)+sinx+\sqrt{3}cosx=\frac{5}{4}\)
d) \(2sinx\left(1+cos2x\right)+sin2x=1+2cosx\)
e) \(sin^2x+4sinx.cosx+3cos^2x-sinx-3ccosx=0\)
a/
\(\Leftrightarrow4sinx.cosx\left(sin^4x-cos^4x\right)=sin^24x\)
\(\Leftrightarrow2sin2x\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^24x\)
\(\Leftrightarrow-2sin2x.cos2x=sin^24x\)
\(\Leftrightarrow-sin4x=sin^24x\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\sin4x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\4x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=-\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
\(\Leftrightarrow2\left(1-cosx\right)-\sqrt{3}cos2x=1+1+cos\left(2x-\frac{3\pi}{2}\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=sin\left(2\pi-2x\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=-sin2x\)
\(\Leftrightarrow sin2x-\sqrt{3}cos2x=2cosx\)
\(\Leftrightarrow\frac{1}{2}sin2x-\sqrt{3}cos2x=cosx\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=cosx=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{2}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{5}{4}=0\)
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{3}\right)-\frac{5}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\\sin\left(x+\frac{\pi}{3}\right)=-\frac{5}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)
\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)
Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)
\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)
I=A+B=...